

Get relevant post-clustering analyses quickly

Samuel Granjeaud, PhD, Research Engineer, CRCM, Inserm, France

We have no financial interest nor other relationships with any manufacturer(s) of commercial product(s) and/or providers of commercial services discussed in our presentation

Meeting day

- French Society of Cytometry
- CyTOF, Spectral,
 Data analysis
- Web

CytoBatchNorm

Post-clustering analyses

- Clusters or populations => features
 - cell counts in every sample
 - MFI of selected markers in every sample
- Identify the clusters that have a feature that makes a difference according to the question
- Time consuming and error prone if not automated
- Few software to perform an automated analysis, e.g.
 R/diffcyt, or commercial software

Key points

- Data quality is important
 - How to control it?
- Results reporting is important
 - Underestimated

The right position?

Fig. 4B, Kimball et al., 2018

Errors in figures

- automate p-values drawing
- automate points labelling

Fig.3D, Kimball, 2018

Fig. 4B, Kimball, 2018

Objectives

- Control quality of features
- Reliable graphics
- Differential Abundance (percentage)
- Differential State (MFI)

- Import
 - cluster features and FCS annotations
 - from various software
- Graphical User Interface

analycyte

- Control quality of features
- ready-to-use reports Differential Abundance (percentage)
- Differential State (MFI)
- Reliable graphics

- cluster features and FCS annotations
- from OMIQ, FlowJo, text files
- Graphical User Interface (R/Shiny)

E. Lohmann

A-S. Chrétien

Dataset

Article

OPEN CCESS

Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases

Daniela Michlmayr^{1,†}, Theodore R Pak^{2,†}, Adeeb H Rahman^{2,3}, El-Ad David Amir^{2,3}, Eun-Young Kim⁴, Seunghee Kim-Schulze^{2,3}, Maria Suprun⁵, Michael G Stewart⁴, Guajira P Thomas⁴, Angel Balmaseda⁶, Li Wang², Jun Zhu², Mayte Suaréz-Fariñas^{2,5}, Steven M Wolinsky⁴, Andrew Kasarskis² & Eva Harris^{1,*}

We performed whole-blood RNA-seq, 37-plex mass cytometry of peripheral blood mononuclear cells (PBMCs), and serum cytokine measurements of acute- and convalescent-phase samples obtained from 42 children naturally infected with CHIKV. Semisupervised classification and clustering of single-cell events into 57 sub-communities of canonical

leukocyte phenotypes revealed a monocyte-driven response to acute infection, with the greatest expansions in "intermediate" CD14++CD16+ monocytes and an activated subpopulation of CD14+ monocytes. Increases in acute-phase CHIKV envelope protein E2 expression were highest for monocytes and dendritic cells.

GUI

1 Features summary

• percent.cluster: Percentage of clusters with cells (> 10 cells) in this fcs. see 1

Table of contents

- 1 Features summary
- 2 Presence / Absence data
- 3 Number of cells Barplot
- 4 Density Heatmap
- 5 MFI's Heatmap
- 6 Mfi x Abundance Heatmap
- 7 Abundance Heatmap
- 8 PCA of samples using percentages per cluster
- 9 PCA of samples using MFI

Glossary

R session info

References

2 Presence / Absence data

With a minimum of 10 per cluster.

Figure 1: Heatmap Presence Absence

Table of contents

- 1 Features summary
- 2 Presence / Absence data
- 3 Number of cells Barplot
- 4 Density Heatmap
- 5 MFI's Heatmap
- 6 Mfi x Abundance Heatmap
- 7 Abundance Heatmap
- 8 PCA of samples using percentages per cluster
- 9 PCA of samples using MFI

Glossary

R session info

References

5 MFI's Heatmap

0 0.25 0.5 0.75 1

8 PCA of samples using percentages per cluster

8.1 Barplot of variance of each PC

8.2 Dim.1 vs Dim.2

Figure 12: Dim.1 vs Dim.2 by cond

Figure 13: Dim.1 vs Dim.2 by acqdate

18

Figure 14: Dim.1 vs Dim.2 by Gender

Figure 15: Dim.1 vs Dim.2

9 PCA of samples using MFI

9.1 Dim.1 vs Dim.2

Figure 25: Dim.1 vs Dim.2 by cond

Figure 26: Dim.1 vs Dim.2 by acqdate

Figure 27: Dim.1 vs Dim.2 by Gender

Figure 28: Dim.1 vs Dim.2

Figure 29: Heatmap Top 10 cos2 for :Dim.1 vs Dim.2

DA report

Table of contents

1 Features summary

- 2 Presence / Absence data
- 3 Biological Question
- 4 Materials and methods
- 5 edgeR
- 6 VOOM
- 7 GLMM
- 8 Comparison of results per method
- 9 Union Graphics

Glossary

R session info

References

5.1.1 volcano and abundance plot

5.1.2 violin plot

relative perCellCountsNorm of each clusters by acqdate

DS report

Table of contents

1 Features summary

- 2 Presence / Absence data
- 3 Biological Question
- 4 Materials and methods
- 5 limma
- 6 LMM
- 7 Comparison of results per method
- 8 Union Graphics

Glossary

R session info

References

5 limma

cluster_id	CellSubset	marker_id	reference	contrast	logFC	explic FC
All	All	All	All	All	All	All
22	Monocyte (CD14+ CD16-)	CD25	Acute	Conv	-2.452	-5.47
22	Monocyte (CD14+ CD16-)	CCR7	Acute	Conv	-6.657	-100
8	CD4+ T Cell (Effector Memory)	CD45	Acute	Conv	91.224	2.8913
22	Monocyte (CD14+ CD16-)	CD209	Acute	Conv	-3.08	-8.4!
22	Monocyte (CD14+ CD16-)	CHIKV	Acute	Conv	-6.89	-118
22	Monocyte (CD14+ CD16-)	CD11c	Acute	Conv	235.168	6.2023
7	CD4+ T Cell (Central Memory)	CD45	Acute	Conv	73.722	1.5579
3	B Cell (Plasmablast)	CD45	Acute	Conv	45.216	4.0876
11	CD4+ T Cell (Treg)	CD45	Acute	Conv	67.598	2.234
22	Monocyte (CD14+ CD16-)	CD123	Acute	Conv	-16.793	-1.1352

Showing 1 to 10 of 780 entries

Previous 12345... 78 Next

analycyte

- Quality control
- Comparison 1-vs-1, all-vs-ref
- Automatically placed p-values
- Reproducible HTML reports
 - based on Quarto templates
- Interactive plots and SVG graphics

analycyte

- https://i-cyto.github.io
- docker image & R packages
- demo reports
- current presentation

- documentation
- multi-variate analyses (ML)

