Sélection | |
---|---|
project | Demonstration on ChKV |
rds | demochkv.rds |
path | /home/lohmann/immunopanc_jg/12_demochkv_sg/11_concat/ |
adcode | TRUE |
analyse_type | DA |
min_cells | 5 |
min_samples | 1 |
p_value | 0.001 |
cluster_id | cluster_id |
conditions | cond |
batch | acqdate |
individuals | patient_id |
ncells | Freq |
sorted | 1 |
log_bar | 1 |
cluster_column_id | marker |
id_mfi | shared_col |
Analysis Type : DA report
This document has been formated using knitr
(Xie 2015) and quarto
(Allaire 2022).
1 Features summary
Sample table with information on conditions (cond), batch (acqdate), individuals (patient_id), ncells (Freq)
Information on metaclusters is grouped in this table with the number of cells and the corresponding description.
A total of 39 markers are included in this analysis report.
The exhaustive list of markers is as follows: Bi209Di, Dy161Di, Dy162Di, Dy163Di, Dy164Di, Er166Di, Er167Di, Er168Di, Er170Di, Eu151Di, Eu153Di, Gd155Di, Gd156Di, Gd158Di, Gd160Di, Ho165Di, In113Di, In115Di, Lu175Di, Nd142Di, Nd143Di, Nd144Di, Nd145Di, Nd146Di, Nd148Di, Nd150Di, Pt194Di, Pt198Di, Sm147Di, Sm149Di, Sm152Di, Sm154Di, Tb159Di, Tm169Di, Yb171Di, Yb172Di, Yb173Di, Yb174Di, Yb176Di.
Differentially Abundant Clusters (DAC) are especially interesting when you want to identify clusters having different cell abundances between two biological conditions.
The following report provides a turnkey analysis using the diffcyt package.
2 Differential Abundance test with egdeR
2.1 Design
The design associated is based on the comparaison of the two parameters of the cond column.
2.2 Differential Abundance (DA) table result
Sorted by ajusted p-value.
Clusters without enough cell counts per patients are excluded.
The DA table can be exported in different formats.
Are excluded the clusters : T Cell_unassigned, Debris without enough cell counts.
3 Volcano Plot
log2(Fold Change) in x-axis.
-log10(adjusted p-value) in y-axis.
The number of cells associated with the cluster is indicated by the size of the dot.
“Significant” DAC are highlighted in red color; associated cuttofs are a combinaison of :
- absolute log2(FC) > 1.
- adjusted pvalue cutoff : 0.001.
4 Number of cells per Cluster and P-value association
Number of cells per cluster associated with low adjusted P-values.
mean % of total cells in x-axis.
-log10(adjusted p-value) in y-axis.
The number of cells associated with the cluster is indicated by the size of the dot.
“Significant” DAC are highlighted in red color; associated cuttofs are a combinaison of :
- mean % of total cells > 1.
- adjusted pvalue cutoff : 0.001.
4.1 Significant cluster list
List of the sorted significant clusters id : 20, 21, 26, 16, 22, 2, 8, 17, 10, 19, 13.
5 Violin plot
Violin Plot on transformed DAC expressions.
Shows the entire distribution of DAcs between groups.
Ashin transformation.
Sorted by adjusted p-value.
6 Heatmap of significant clusters
Exploration of the variability of patient_id accross DACs.
- Visualize samples organized according to hierarchical grouping or by condition on DAC.
Percentage heatmap with samples in columns and clusters in rows.
By default, clusters and samples are grouped using hierarchical clustering. It is also possible to classify samples by condition, gender or patient, and to give clusters as an ordered vector.
Group abundance is shown in the right-hand barplot with log values.
Code
Code
# css: www/custom.css
# js: www/script.js
#| include=F
library(R.AnalytiCyte)
library(readr)
library(dplyr)
library(SummarizedExperiment)
library(diffcyt)
library(ComplexHeatmap)
library(RColorBrewer)
library(randomcoloR)
library(colorRamp2)
library(data.table)
library(tidyr)
library(ggplot2)
library(ggrepel)
library(grid)
library(kableExtra)
library(tibble)
library(plotly)
library(reactable)
# parameters set
<- dataSE$SE_abundance
se rowData(se) |>
as.data.frame() %>%
mutate(cluster_id = factor(cluster_id, levels = rownames(se))) %>%
arrange(cluster_id) -> rowData(se)
<- 10 # Adjust the
desired_width <- 10 # Adjust the coefficient to control the scaling
desired_height
::opts_chunk$set(
knitrfig.width = desired_width,
fig.height = desired_height
)
<- dataSE$SE_mfi
se_mfi <- "median"
applied_fct_plot <- "meta"
t_metadata <- "perCellCounts"
perCellCounts <- "shared_col"
id <- "scaled_MFI"
scaled_MFI
<- params$conditions
Conditions <- params$batch
batch
<- params$individuals
patient <- params$ncells
size_
<- Conditions
col_interest <- size_
col_cell <- Conditions
separator_ <- Conditions
col_ <- Conditions
shape_
<- rowData(se) |>
r_order as.data.frame() |>
::arrange(desc(n_cells)) |>
dplyrrownames()
<- params$cluster_column_id # : "ftr (sec)"
cluster_column_id <- params$id_mfi # : "file"
id_mfi
<- params$sorted
sorted <- params$log_bar
log_bar
if (params$analyse_type == "DA" | params$analyse_type == "DS") {
<- "none"
trend_method_ <- params$min_cells
min_cells_ <- params$samples
min_samples_ <- FALSE
normalize_ <- "TMM"
norm_factors_ <- params$cluster_id
c_id <- params$p_value
pval
}
::create_dt(colData(se) %>%
R.AnalytiCyteas.data.frame(), length = 10, filter = "top")
::create_dt(rowData(se) %>%
R.AnalytiCyteas.data.frame(), length = 10, filter = "top")
<- names(assays(se_mfi))
markers
<- knitr::all_labels()
labs
library(diffcyt)
library(ggiraph)
library(reactable)
<- getFeature(se_object = se, target_vector = c("metadata", t_metadata))
meta # sprintf('## Design Table')
<- diffcyt::createDesignMatrix(
design experiment_info = meta, cols_design = c(col_interest)
)
# contrast <- diffcyt::createContrast(c(0,1,0,0))
<- diffcyt::createContrast(c(0, 1))
contrast # data.frame(parameters = colnames(design), contrast)
<- diffcyt::testDA_edgeR(
res_DA
se,
design,
contrast,trend_method = trend_method_,
min_cells = min_cells_,
min_samples = min_samples_,
normalize = normalize_,
norm_factors = norm_factors_
)
<- merge(rowData(se), rowData(res_DA), by = c_id)
table_Resul_annot
::create_dt(na.omit(table_Resul_annot) |> as.data.frame() |> arrange(p_adj) %>%
R.AnalytiCyteas.data.frame(), filter = "top", length = 10)
# Volcano plot ####
::volcano_plot(
R.AnalytiCyteannotation = "CellSubset",
se = se,
deres = res_DA,
exprs = "counts",
annot_se = c_id,
annot_deres = c_id,
t_metadata = t_metadata,
col_cell = col_cell,
col_interest = col_interest,
sorted = F,
target = "rowData",
id = id,
pvalue_ = pval
)
::Abundance_size_sig(
R.AnalytiCyteannotation = "CellSubset",
se = se,
deres = res_DA,
exprs = "counts",
annot_se = c_id,
annot_deres = c_id,
t_metadata = t_metadata,
col_cell = col_cell,
col_interest = col_interest,
sorted = F,
target = "rowData",
id = id,
pvalue_ = pval
)
subset(table_Resul_annot, p_adj < as.numeric(pval)) |> as.data.frame() -> Sub_DA_res
# R.AnalytiCyte::create_dt(Sub_DA_res, filter="top")
<- Sub_DA_res |>
significant arrange(p_adj) |>
pull(c_id)
<- Sub_DA_res |>
names arrange(p_adj) |>
pull(CellSubset)
<- droplevels(significant)
significant # significant <- factor(significant, levels = significant)
if (length(significant) > 0) {
::boxplot_like_catalyst(
R.AnalytiCyterowdata = TRUE,
se = se,
exprs = "perCellCountsNorm",
t_metadata = t_metadata,
col_cell = col_cell,
col_interest = col_interest,
sorted = sorted,
annot_se = c_id,
target = "rowData",
split_ = "CellSubset",
col_ = col_,
separator_ = col_,
shape_ = patient,
id = id,
sub_split_ = names,
applied_fct_plot = "geom_violin"
)
}
if (length(significant) > 0) {
::heatmap_abundance_like_catalyst(
R.AnalytiCyte# ajouter la possibilité de trier les colonnes, rows
se = se,
metadata_sub = c("acqdate", "patient_id", "cond"),
exprs = "counts",
t_metadata = t_metadata,
separator_ = col_,
patient = patient,
id = id,
metadata_sort = NULL,
clustr = T,
clustc = T,
margin_ = 1,
q_ = 0.01,
round_ = 8,
fontsize_ = 8,
subset_patient = NULL, # reduction of patients of interest, order of the heatmap if clustr F
subset_cluster = as.character(significant), # reduction of clusters of interest, order of the heatmap if clustc F
log_bar = T
) }