To read a heatmap, you need to know how to build it

S. Granjeaud CRCM – Inserm – AFC part2, v230629

"What I cannot build. I do not understand." Richard Feynman

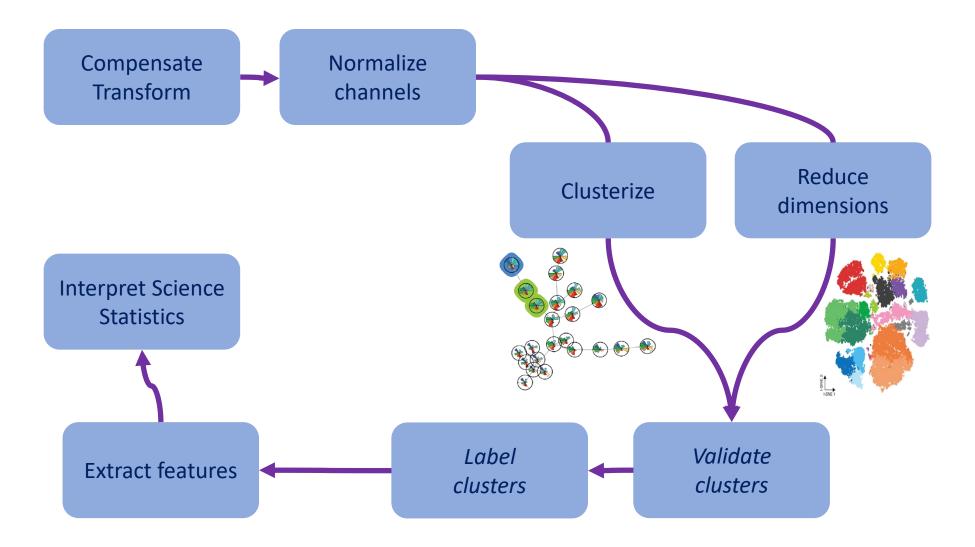
Thanks to

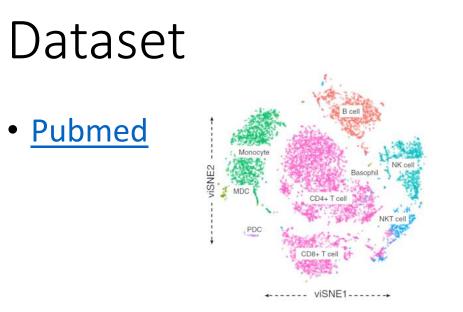
• AFC & Aïda

• Data extraction & analysis

• Phantasus

• Projects building, Support



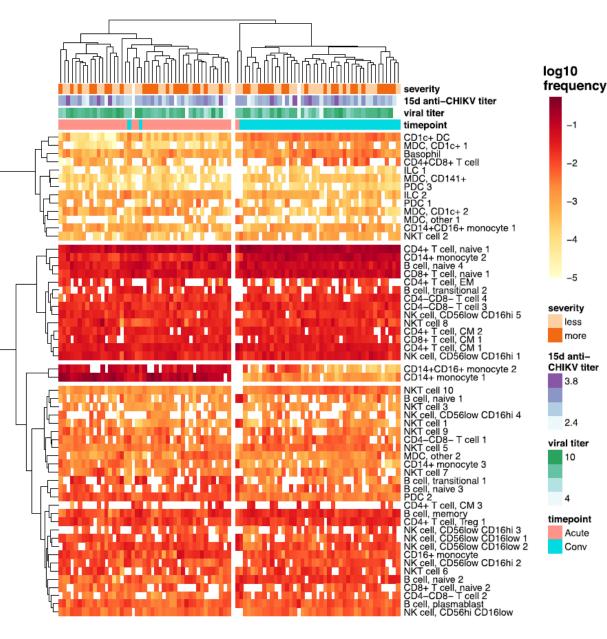


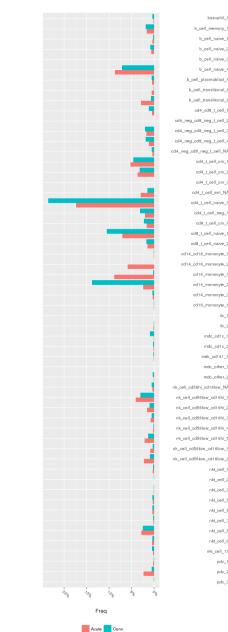
Outline

- Pipeline recap
- Dataset and extracted tables
- What is a heatmap?
- Abundance, frequency: what is the goal?
- Scalings... and results
- Heatmap with Excel
- Heatmap with Phantasus

Pipeline recap

Article


TRANSPARENT OPEN PROCESS ACCES molecular systems biology


Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases

Daniela Michlmayr^{1,†}, Theodore R Pak^{2,†}, Adeeb H Rahman^{2,3}, El-Ad David Amir^{2,3}, Eun-Young Kim⁴, Seunghee Kim-Schulze^{2,3}, Maria Suprun⁵, Michael G Stewart⁴, Guajira P Thomas⁴, Angel Balmaseda⁶, Li Wang², Jun Zhu², Mayte Suaréz-Fariñas^{2,5}, Steven M Wolinsky⁴, Andrew Kasarskis² & Eva Harris^{1,*}

• We performed whole-blood RNA-seq, 37-plex mass cytometry of peripheral blood mononuclear cells (PBMCs), and serum cytokine measurements of acute- and convalescent-phase samples obtained from 42 children naturally infected with CHIKV. Semi-supervised classification and clustering of single-cell events into **57 sub-communities** of canonical leukocyte phenotypes revealed a monocyte-driven response to acute infection, with the greatest expansions in "intermediate" CD14++CD16+ monocytes and an activated subpopulation of CD14+ monocytes. **Increases in acute-phase CHIKV** envelope protein E2 expression were highest for monocytes and dendritic cells.

Dataset - Example

-1

-2

-3

-4

-5

less

more

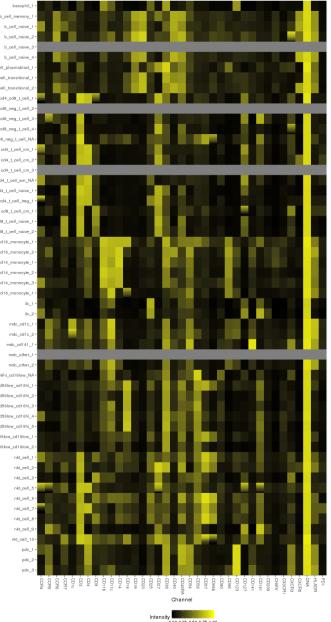
15d anti-

CHIKV titer

3.8

2.4

viral titer


10

timepoint

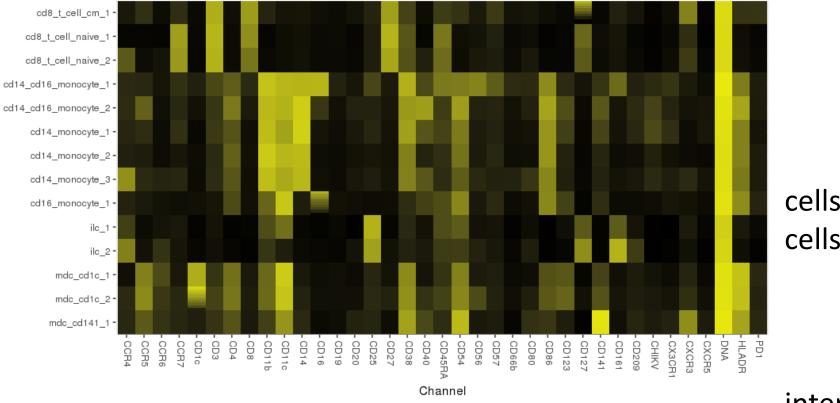
Acute

Conv

severity

0.00 0.25 0.50 0.75 1.00

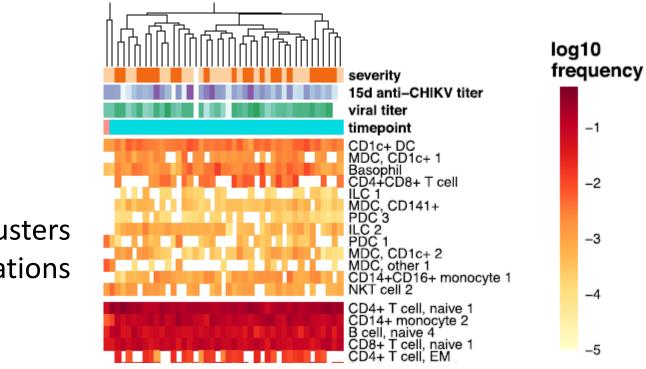
Heatmap


- A heatmap represents a rectangular matrix of data as an image
- A heatmap implies a numeric to color coding
- The color scale is the same for all the table (aka matrix)
- A heatmap is a XY plot of rectangular points with a color associated to a measure
- What is the measure?
- What is X axis? Y axis?

Matrix of data

- Different elements in rows and columns: clusters, markers, patients
- Many contents: count, percent, MFI
- Each content has a large dynamic range
- The dynamic range is larger than the information we look for

Heatmap of MFI


FCS markers proteins

cells clusters cells populations

Intensity 0.00 0.25 0.50 0.75 1.00 intensity

Heatmap of frequency

cells clusters cells populations

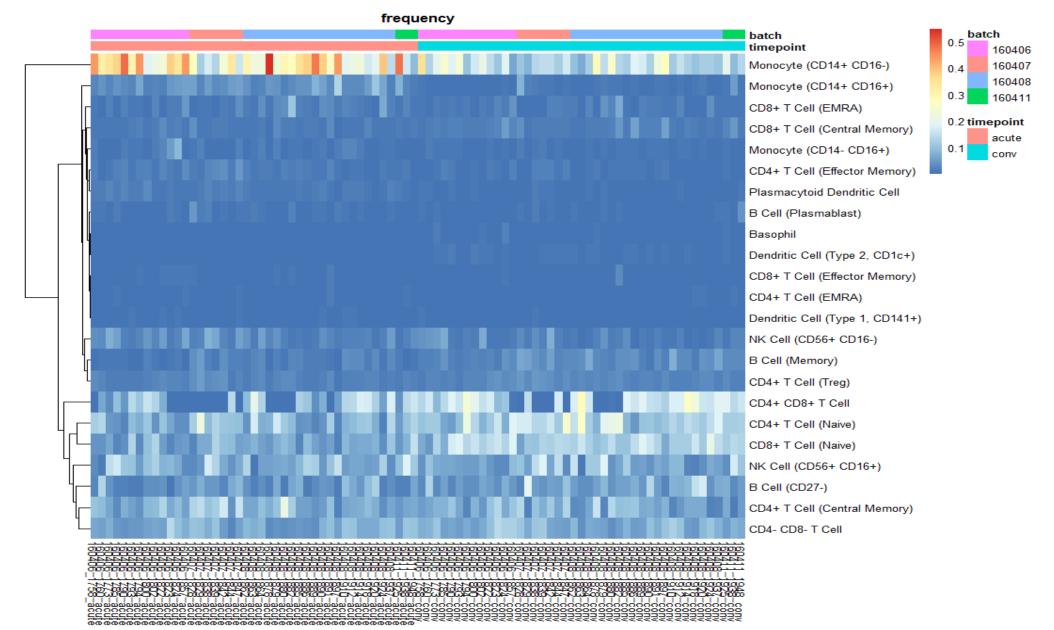
frequency FCS files samples patients

Matrix of abundance

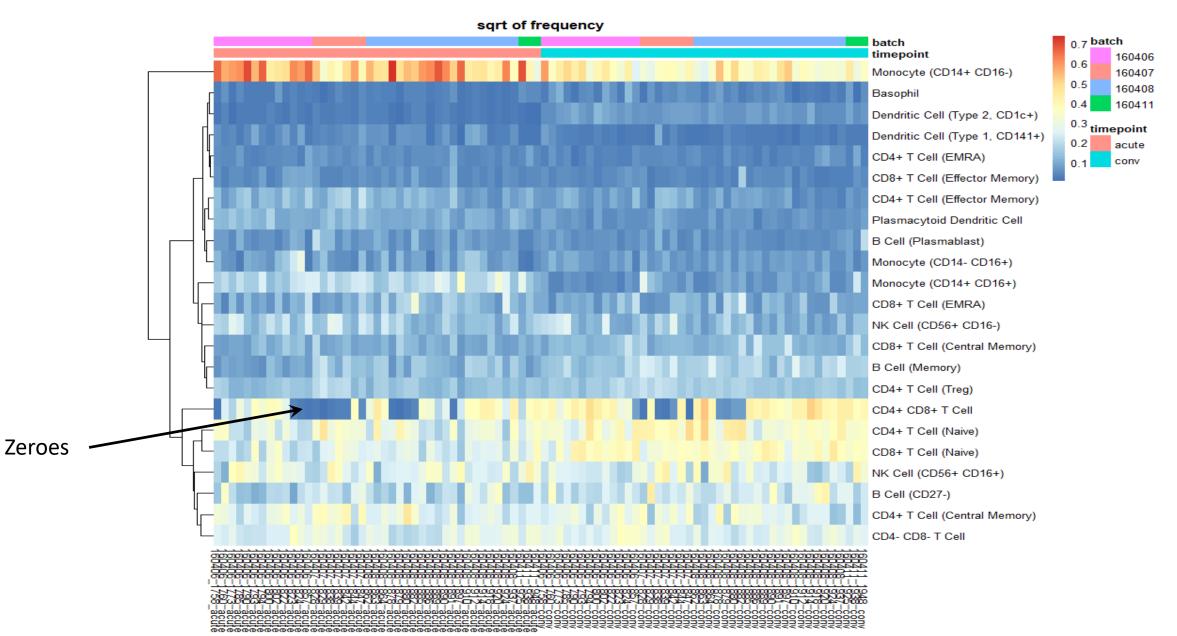
- Different elements in rows and columns: clusters, patients
- Many contents: count, percent
- Each content has a large dynamic range
- What is the information we are looking in the graphics?
- What is the question?
- How the content should be processed to become information?
- The content must be scaled in order to show the information
- The scaling depends on the content and the elements in rows and columns

Methods for scaling

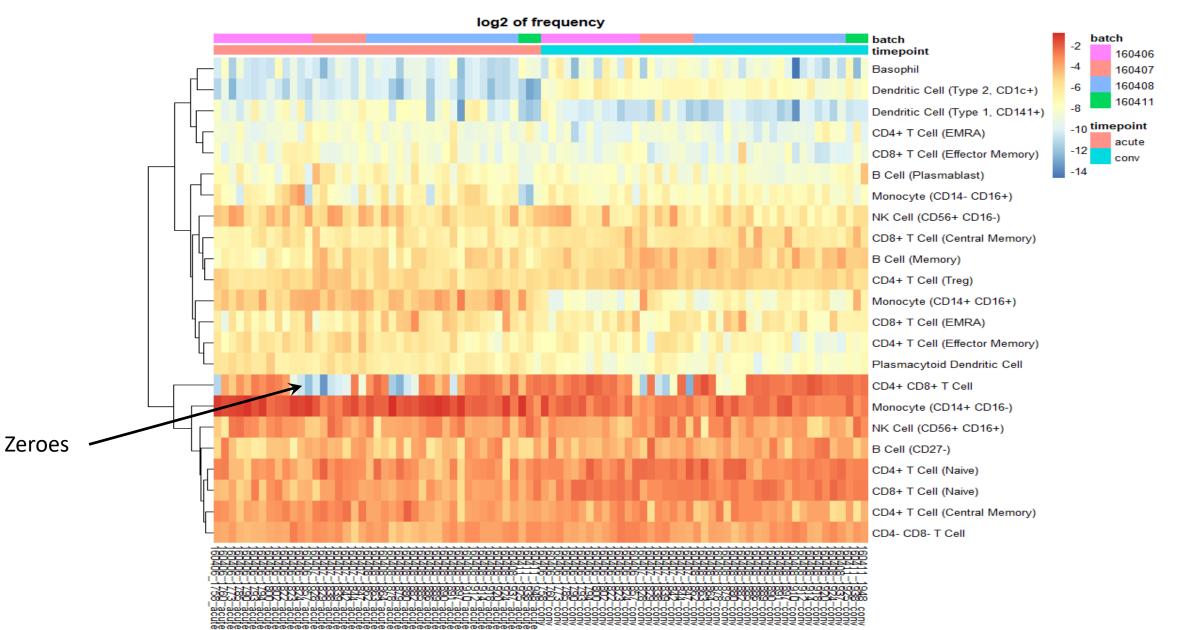
- min to max
 - min = 0, max = 1
- center
 - mean = 0 or median = 0
- standardize
 - centering
 - divide by standard deviation
- apply to all data, but determine coefficients on all or a subset of data?


Data to visualize = Matrix of abundance

A	В	С	D	E	F	G	Н		J	K	L	М	Ν	0	P	Q	R	S	T	U	۷	W	Х	Y	Ζ	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK Al
1 cluster	_id uster_nan	6_1758_	6_1758	5_1760_0	6 _1760 ,6	5_1773_)	6_1773	5_ 178 5_	6_1785,6	5_1790_)	6_1790,6	_1793_)	6 _1793 6	_1794_)	6_1794,6	_1800_0	5_ 1800 ,6	_1802_)	5 _1802 6	_1822_0	5_ 1822 ,6	_1823_)	6_1823,6	5_1824)	6_1824	6_1857_0	5_1857,7	_1828_)	7_18287	_1829_)	7_18297	_1838_)	7_18387	_1839_)7	_1839_7	_1842_17_18
2 K1	B Cell (CD	1166	5478	9089	17594	1626	5907	1286	11142	2551	4729	934	12315	403	5129	2904	6603	4611	13501	1048	2977	199	5945	2592	15839	2530	4832	2406	5843	4670	31867	2492	7861	3993	5478	1686 119
3 K2	B Cell (Me	187	3225	685	2867	296	4498	608	8120	813	3156	381	3181	84	2357	1394	4731	1376	4382	125	1360	237	2672	778	9155	243	3322	1818	13596	3238	9130	1156	6384	765	3883	2669 118
4 K3	B Cell (Pla	287	1102	411	543	85	1560	890	853	494	436	153	978	118	434	333	661	174	866	129	273	289	276	628	876	49	269	2341	1656	1010	482	967	2084	242	278	600 17
5 K4	B Cell_un	2184	19361	8841	20565	3530	7658	2531	17003	2930	6143	1031	5804	912	16404	9928	13396	7959	8540	699	2089	532	8795	2397	18981	924	11726	7123	17249	14074	14212	3316	10389	5249	9088	6014 114
6 K5	Basophil	39	99	260	717	13	2334	185	322	0	0	0	548	0	425	0	0	708	2039	17	200	0	135	0	3458	44	450	0	0	11	731	0	182	160	361	0 4
7 K6	CD4+ CD8	0	22718	4306	22357	1324	15555	7155	26491	6379	33177	11112	37394	3091	32680	12473	36528	16463	31171	1946	10405	0	15019	0	22620	0	708	0	0	0	23847	0	0	0	0	0 7
8 K7	CD4+ T Ce	5153	9110	6484	8315	2680	14915	2437	15099	9530	19052	4605	15702	1271	3471	6703	15501	12022	9815	3317	6033	1588	22731	5952	14550	2535	10727	6777	29794	9545	3309	5702	15164	10148	10324	12360 231
9 K8	CD4+ T Ce	872	770	320	607	369	1871	1553	3249	3427	2257	582	1088	539	421	1358	1506	1219	829	676	694	332	1010	715	770	1510	1972	620	1086	534	138	1264	2794	2445	2915	2723 35
10 K9	CD4+ T Ce	128	163	174	641	80	305	447	594	222	67	93	214	42	424	170	174	281	326	80	85	75	189	80	207	439	411	243	415	358	377	157	318	312	428	179 5
11 K10	CD4+TCe	5977	17655	9211	15457	1809	20934	3217	12460	3248	9455	7107	23023	2177	30077	8399	25936	5482	16296	2559	6665	1412	28114	2306	15023	1752	18713	6072	38773	14486	27766	5094	20615	11304	18409	8209 330
12 K11	CD4+ T Ce	1618	2729	1824	3592	541	4681	926	3694	2154	4703	1078	3441	434	3637	1609	5180	2844	4820	765	2102	521	7279	1525	5931	814	3530	1997	10305	3411	5018	1823	6868	3188	5605	2934 77
13 K12	CD4- CD8-	3158	12606	4044	10848	2997	19347	3638	10474	5682	11616	3848	12581	1367	9610	4750	10347	7929	13861	1535	5813	3270	23885	6314	26402	3304	12649	5479	23470	6223	11035	4285	16144	8733	15527	3736 123
14 K13	CD8+TCe	338	1243	429	2141	342	3327	634	2869	813	3326	1118	4419	644	1546	635	2611	1665	2967	709	1145	382	4297	1447	10635	257	2464	1992	7670	470	1199	462	1940	1018	1826	1168 33
15 K14	CD8+TCe	178	602	67	189	112	580	231	549	190	411	174	342	222	320	90	197	316	468	211	130	228	669	517	1270	430	423	329	945	103	105	84	195	140	227	197 4
16 K15	CD8+TCe	552	1585	105	312	733	2400	281	1549	2302	2069	454	1847	291	1739	321	607	2993	3143	104	418	344	4614	767	2669	2097	4416	139	808	436	528	477	769	443	574	1090 43
17 K16	CD8+TCe	2079	11915	2799	6565	2468	24243	1945	14198	4777	31314	10556	45748	893	18087	7549	30201	16450	25147	1394	8754	621	27688	3008	27110	2297	18683	1266	13029	4310	17230	4024	15604	11280	17166	7395 250
18 K17	CM- HLAD	1342	3285	1527	2032	109	1597	864	1416	1452	2541	1679	1380	157	868	261	535	1926	1386	425	234	843	445	3174	786	116	291	1194	1782	1643	384	671	4763	884	681	1041 39
19 K18	CMunas	488	6255	2687	11096	898	1945	6806	4565	1163	3392	793	2335	464	2473	866	2724	910	4142	419	2872	341	2165	996	2129	2129	3065	3956	4575	1184	2410	1008	2200	1996	1949	1114 34
20 K19	Dendritic	177	1126	89	504	77	267	51	171	260	189	756	176	66	106	96	296	414	156	166	50	0	55	557	120	30	57	89	137	136	61	74	1579	214	83	293 4
21 K20	Dendritic	0	530	113	372	0	1076	55	1399	0		0		0		119	2719	-	1977	0	390	0		0		19	392	72	999	50	611	0	514	0	842	0 13
22 K21	Monocyte			2760	181			3142		3666	554	2198	933	1796	245		376		625	521	174	1092		3468			269		17606	1748		2935	1810	2571	771	2761 11
23 K22	Monocyte	22329	59594	22444	17604		36709	28184	48024	64320				13234	13999	15210	31837	28353						22760		20172	6455						19961	11094	19693	18526 299
24 K23	Monocyte	706	909	339	1925	147	1057	56		1461	1866	690	1365	211	708	312	633	2023	666	661	477	1197	746	5753	2269	21	110	398	2800	1285	618	241	848	273	1662	197 7
25 K24	NK Cell (C	1592	6786	828	13438	5891	12305	12519	12036	14456	10900	8152	13634	1474	6904	8227			15814	2122	2667	2026		4648	6488	1499	8967	1557	22335	3048	9066	9826	22268	11137	25143	5249 129
26 K25	NK Cell (C	1786		2083	6418	3077	10133	4214	13489		2879	934	2070		2270					1340	556	310		1526			1675	940	6961	1516	1831	4474	5631	5589	2898	1725 149
27 K26	Plasmacy			1058	1353	970	933	1092		2908	1049	1122	847	390	236	2539	1446	1132	447	210	125	264	735	717	685	440	265	399	662	901	736	1378	2100	996	1030	1458 14
28 K27	Root_una		7188	1583	4268	3443	14678	4397	16253	7660	48164	4626	27174	2692	18450	4678			7233	1254	6147		24563		21357	3794	10824	27	924	3138		405	6461	3482	5266	4048 145
29 K28	T Cell_un			0	0	0	14	0	0	0	0	0	14	0	0	0	10	12	0	0	0	0	11	29	49	51	0	0	116	0	24	0	0	0	0	0
30 K30	Debris	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


Question = Find difference of frequency

- Frequency is based on transformed intensity (usually logarithm)
- Goal: determine the cell population/cluster whose frequency varies in relation to groups of patients
 - relates to the univariate statistical test to be performed
- Hypothesis: the frequency of a cluster ranges from low to high in the set of samples (FCS)
- Scaling: log2 transform and center to average of each cluster i log2_freq_i = log2(freq_i) log2_freq_i_scaled = log2_freq_i - mean(log2_freq_i)


Heatmap of frequency

Transformed frequency

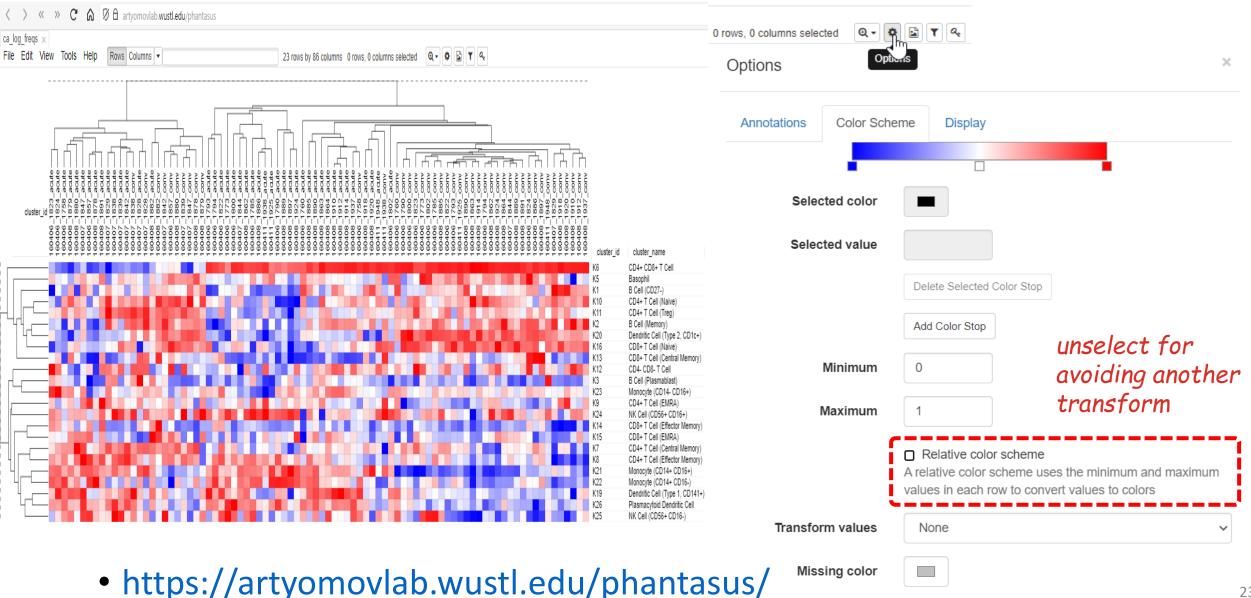
Transformed frequency

log2 of frequency centered per cluster relative to the cluster average batch batch timepoint 160406 2 CD4+ CD8+ T Cell 160407 0 160408 Basophil 160411 -2 Dendritic Cell (Type 2, CD1c+) -4 timepoint B Cell (Memory) acute -6 B Cell (CD27-) conv -8 CD8+ T Cell (Naive) CD4+ T Cell (Naive) CD4+ T Cell (Treg) Monocyte (CD14+ CD16+) Dendritic Cell (Type 1, CD141+) Monocyte (CD14- CD16+) B Cell (Plasmablast) CD8+ T Cell (Effector Memory) CD4+ T Cell (Central Memory) CD4- CD8- T Cell CD8+ T Cell (Central Memory) CD8+ T Cell (EMRA) CD4+ T Cell (Effector Memory) Monocyte (CD14+ CD16-) Plasmacytoid Dendritic Cell CD4+ T Cell (EMRA) NK Cell (CD56+ CD16+) NK Cell (CD56+ CD16-)

log2 of frequency centered per cluster relative to the cluster average З batch batch timepoint 160406 2 CD4+ CD8+ T Cell 160407 1 160408 Basophil 160411 0 Dendritic Cell (Type 2, CD1c+) timepoint -1 B Cell (Memory) acute B Cell (CD27-) -2 conv CD8+ T Cell (Naive) -3 CD4+ T Cell (Naive) CD4+ T Cell (Treg) Monocyte (CD14+ CD16+) Dendritic Cell (Type 1, CD141+) Monocyte (CD14- CD16+) B Cell (Plasmablast) CD8+ T Cell (Effector Memory) CD4+ T Cell (Central Memory) CD4- CD8- T Cell CD8+ T Cell (Central Memory) CD8+ T Cell (EMRA) CD4+ T Cell (Effector Memory) Monocyte (CD14+ CD16-) Plasmacytoid Dendritic Cell CD4+ T Cell (EMRA) NK Cell (CD56+ CD16+) NK Cell (CD56+ CD16-)

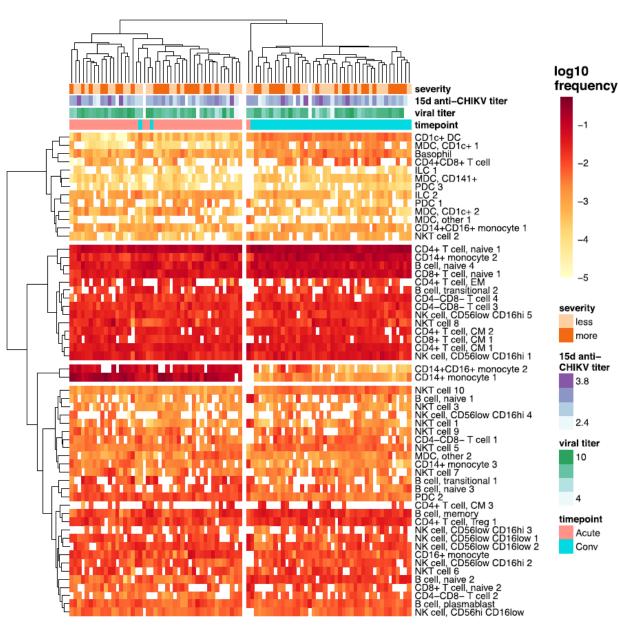
monocytedriven response to acute infection, with the greatest expansions in "intermediate" CD14++CD16+ monocytes and an activated subpopulation of CD14+ monocytes

log2 of frequency centered per cluster relative to the "acute" average batch batch timepoint 160406 2 Monocyte (CD14+ CD16+) 160407 1 160408 CD8+ T Cell (Effector Memory) 160411 0 CD8+ T Cell (EMRA) timepoint -1 Monocyte (CD14+ CD16-) acute Plasmacytoid Dendritic Cell -2 conv CD4+ T Cell (Central Memory) -3 CD4+ T Cell (Effector Memory) B Cell (Plasmablast) CD4+ T Cell (EMRA) NK Cell (CD56+ CD16+) NK Cell (CD56+ CD16-) Dendritic Cell (Type 1, CD141+) Monocyte (CD14- CD16+) CD4+ CD8+ T Cell Dendritic Cell (Type 2, CD1c+) Basophil CD4+ T Cell (Naive) CD8+ T Cell (Naive) CD8+ T Cell (Central Memory) CD4+ T Cell (Treg) CD4- CD8- T Cell B Cell (CD27-) B Cell (Memory)


monocytedriven response to acute infection, with the greatest expansions in "intermediate" CD14++CD16+ **monocytes** and an activated subpopulation of CD14+ monocytes

Let's do it with Excel!

A	В	С	D	Е	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL
98 cluster_id	CD56	CCR4	CD40	CD25	CCR7	CD3	CD4	CD8	CD27	CD45	PD1	CD38	CD80	CD11b	CD123	CXCR5	CCR5	СНІКУ	CD14	CCR6	CD57	CD19	CD45RA	CD141	CD16	CD1c	CD20	CD127	CD66b	CD86	CD11c	CX3CR1	CD161	CD209	CXCR3	HLADR	CD54
99 K1																																					
100 K2																																					
101 K3																																					
102 K4																																					
103 K5																																					
104 K6																																					
105 K7												_																									
106 K8																				_																	
107 K9																																	_				
108 K10																																					
109 K11																							_										_		_		
110 K12																							_														
111 K13																					_												_				
112 K14																																	_				
113 K15	_																					_														_	
114 K16 115 K17																																					
116 K18																																					
117 K19																																					
118 K20																																					
119 K21																																					
120 K22																																					
121 K23																																					
122 K24																																					
123 K25																																					
124 K26																																					
125 K27																																					
126 K28																																					
127 K30																																					


Let's view it with Phantasus

Conclusion

- Heatmap is a classical way to visualize/explore the variation in frequency of clusters in relation to groups of patients
- Counts need to be transformed into frequencies
- Frequencies are usually log transformed and centered
 - centering is performed per cluster
 - centering on the overall mean or on the mean of a reference group
 - scaling can also be performed
- Caveats of zero counts
- Data available at <u>i-cyto.github.io</u>
- To be continued...

Dataset - Example

Is this visualization the best to identify differences?

Is the frequency optimally transformed?