OMIQ Data Extraction Tutorial
How to extract data from OMIQ
June 9, 2023
Workflow
Perform your classic OMIQ workflow.
Scaling -> Gating -> Subsampling -> Dimensionality reduction -> Clustering
Export Abundance
![]()
![]()
Samples of interest selection
![]()
Select all the fcs for which you want statistics
Exporting an abundance table
![]()
Bypass the « Count Ratio » and « Metadata » panel and go to “Configuration” panel
Keep these settings and you’re now ready to export the data table
Example of an abundance table
The final table will be as follows
raw_D1.fcs |
226 |
139 |
729 |
360 |
613 |
1083 |
319 |
610 |
368 |
553 |
raw_D2.fcs |
245 |
175 |
741 |
350 |
594 |
1025 |
330 |
628 |
378 |
534 |
raw_D3.fcs |
227 |
164 |
709 |
369 |
605 |
972 |
354 |
708 |
377 |
515 |
raw_P1.fcs |
594 |
497 |
325 |
583 |
364 |
617 |
533 |
360 |
905 |
222 |
raw_P2.fcs |
684 |
494 |
285 |
551 |
345 |
629 |
542 |
360 |
893 |
217 |
raw_P3.fcs |
632 |
461 |
320 |
574 |
339 |
619 |
543 |
385 |
900 |
227 |
Export MFI
![]()
The first step is similar to abundance extraction
![]()
Selection of samples of interest
![]()
Select all the fcs for which you wish to obtain statistics.
Export of MFI database
![]()
Bypass the « Counts », « Count Ratio » and « Metadata » panel and go to “Configuration” panel
- Set Layout Selection to Database
- Choose either raw or scaled MFI (asinh)
![]()
Example MFI table
The final table will be as follows
raw_D1.fcs |
2.7100 |
median |
MC01 |
146 |
CD64-146 |
raw_D1.fcs |
2.5300 |
median |
MC02 |
146 |
CD64-146 |
raw_D1.fcs |
0.0341 |
median |
MC03 |
146 |
CD64-146 |
raw_D1.fcs |
2.5700 |
median |
MC04 |
146 |
CD64-146 |
raw_D1.fcs |
0.0813 |
median |
MC05 |
146 |
CD64-146 |
raw_D1.fcs |
0.7820 |
median |
MC06 |
146 |
CD64-146 |
Samples of interest selection
![]()
Select all the fcs for which you want statistics