
Cytofkit – Cytofast Analyses

Unsupervised Analyses

S. Granjeaud, CRCM

Events analysis

Validate, Name

Cytofkit – Cytofast Analysis

http://i-cyto.github.io

- cytofkit
 - Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline

- Cytofast
 - Cytofast: A workflow for visual and quantitative analysis of flow and mass cytometry data to discover immune signatures and correlations

Installation

- Open R/RStudio
- Do copy/paste/run commands line by line
- Whenever you get a message 'Update all/some/none? [a/s/n]:', answer n

```
# Install Bioconductor stuff
install.packages(c("BiocManager", "remotes"))
BiocManager::install(update = FALSE) # verify
# Install requirements
options(install.packages.check.source = "no")
BiocManager::install("flowCore", update = FALSE)
BiocManager::install("uwot", update = FALSE)
BiocManager::install("cytofast", update = FALSE)
BiocManager::install(c("RANN", "igraph"), update = FALSE)
# Install cytofkitlab packages for Windows
install.packages("https://github.com/i-cyto/Rphenograph/releases/download/Rphenograph 0.99.1.9003/Rphenograph 0.99.1.9003.zip",
     repos = NULL, type = "win.binary")
BiocManager::install("i-cyto/cytofkitlab", update = FALSE)
# Install cytofkitlab packages for Mac/Linux
BiocManager::install("i-cyto/Rphenograph", type = "source", update = FALSE)
BiocManager::install("i-cyto/cytofkitlab", update = FALSE)
```


Outline

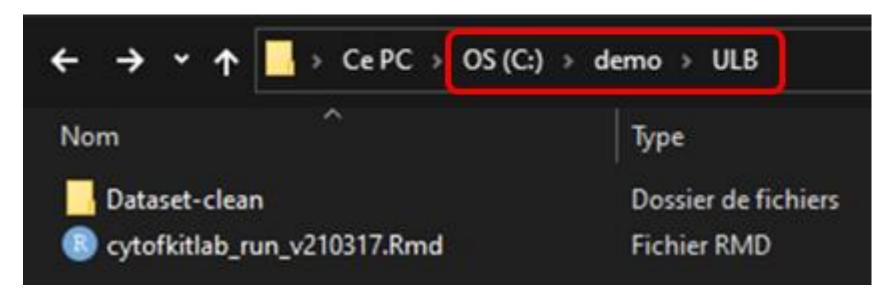
 Question: Find a group of cells that differ in abundance between two groups of patients

- Run calculations
- Use graphical interface to view results
- Use a cytofast script to get nicer figures

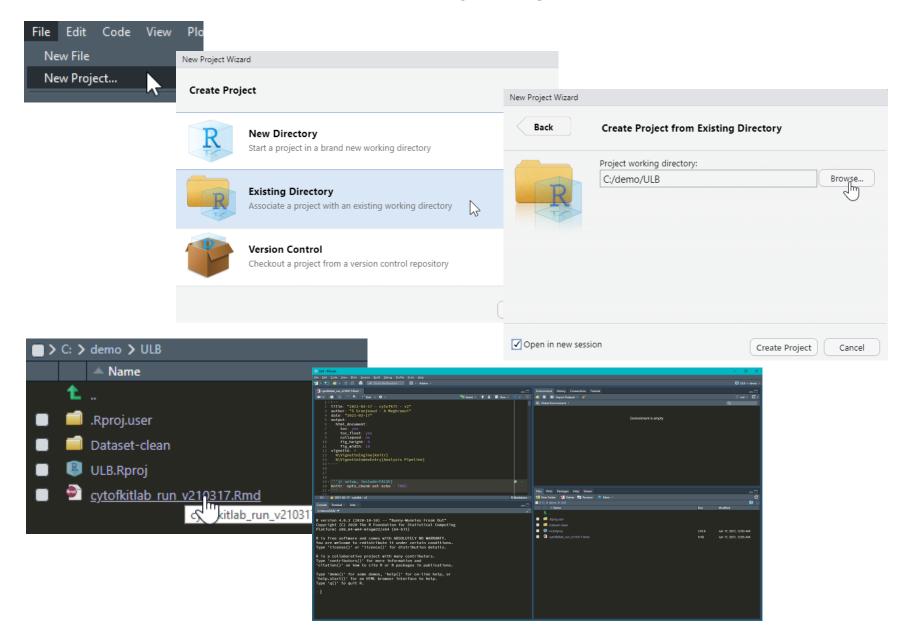
ORGANIZE DATA

Organize data

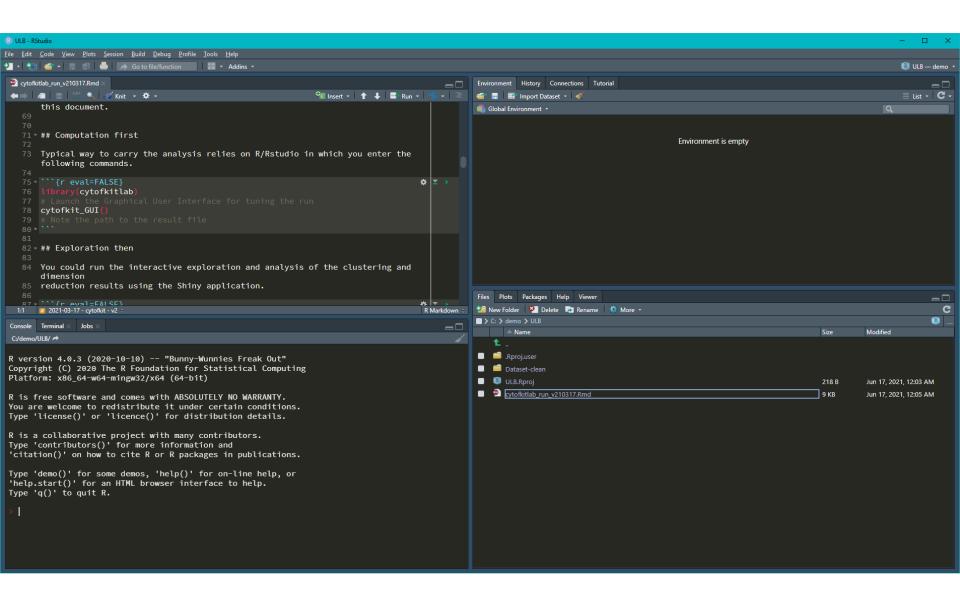
- Create a folder and copy
 - FCS files in a data folder
 FCS files to analyze
 - cytofkitlab_run_v210317.Rmdtemplate to run commands
- Start a RStudio project from this existing folder on disk


Prepare data

C:\demo\ULB


=> D:\0_bootcamp\cytofkit

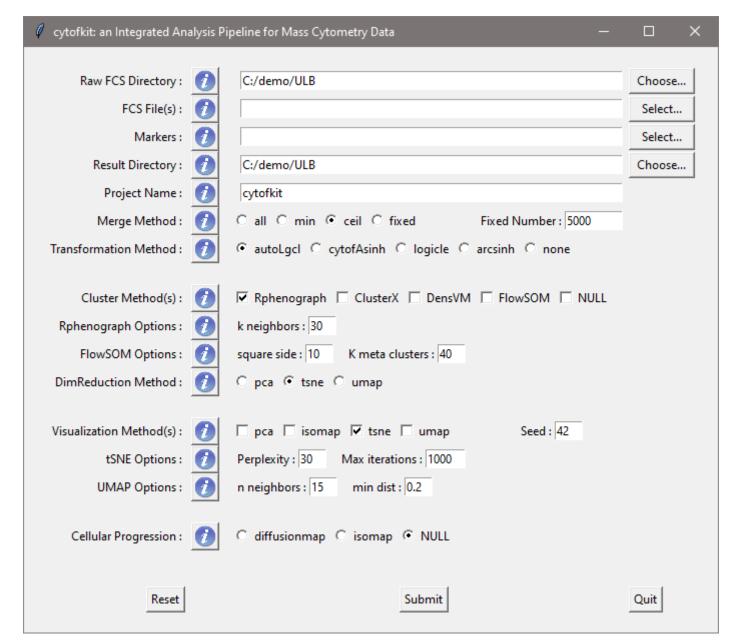
Prepare data



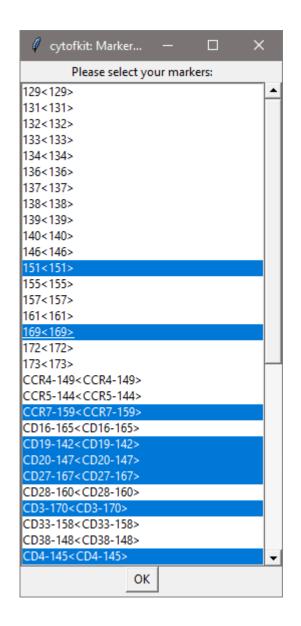
← → → ↑	→ Ce PC → OS (C:) → demo → ULB → Dataset-clean		
Nom	Modifié le	Туре	Taille
clean_D1.fcs	2021-03-16 08:15	Fichier FCS	3 115 Ko
clean_D2.fcs	2021-03-16 08:15	Fichier FCS	3 208 Ko
clean_D3.fcs	2021-03-16 08:15	Fichier FCS	3 061 Ko
clean_P1.fcs	2021-03-16 08:15	Fichier FCS	3 015 Ko
clean_P2.fcs	2021-03-16 08:15	Fichier FCS	2 939 Ko
clean_P3.fcs	2021-03-16 08:15	Fichier FCS	3 087 Ko
Panel.docx	2021-03-16 08:15	Document Micros	34 Ko

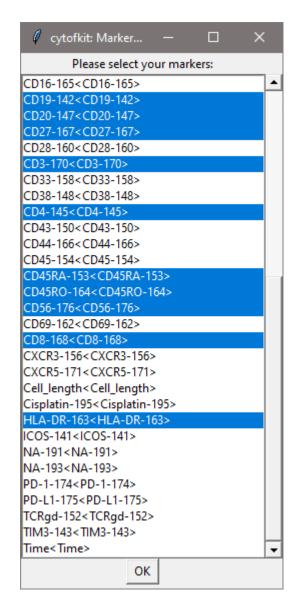
Create project

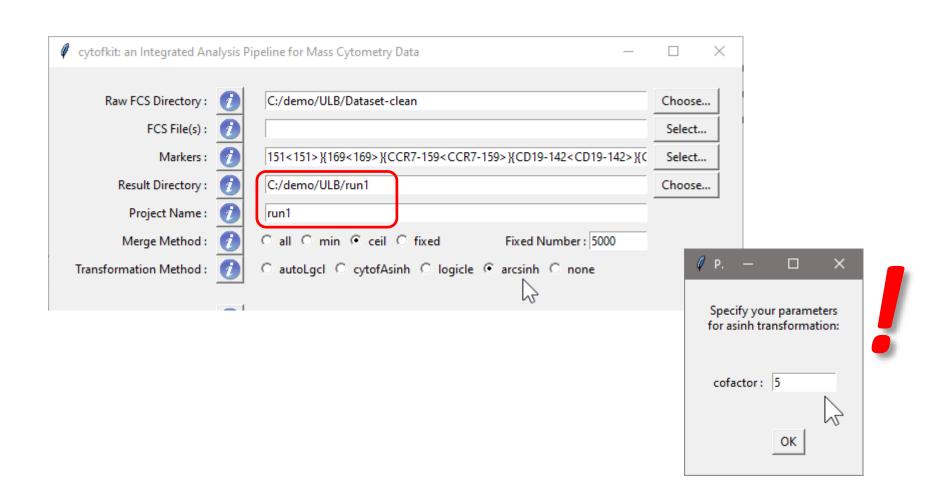
Guided analysis

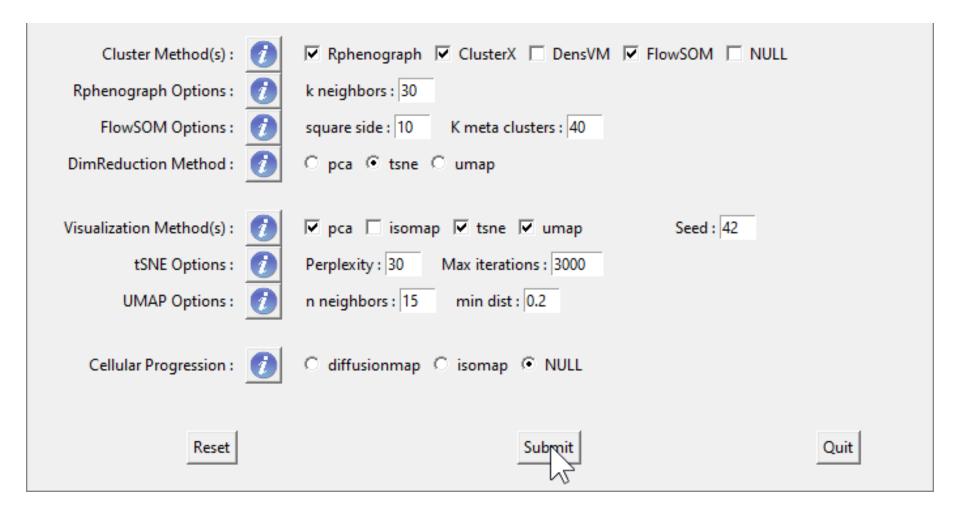


RUN CALCULATIONS CYTOFKIT


Run calculations with cytofkit

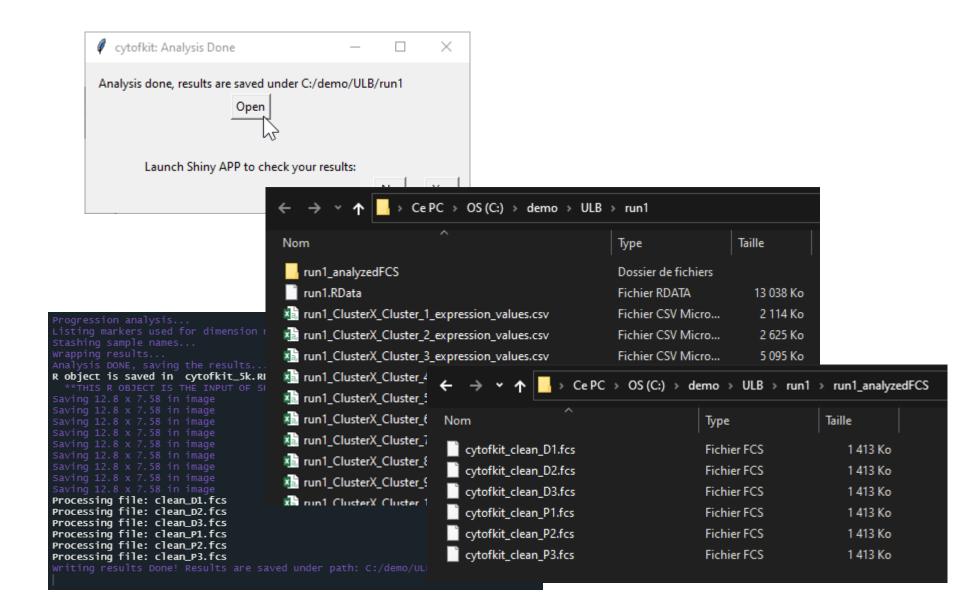

```
71 * ## Computation first
72
73 Typical way to carry the analysis relies on R/Rstudio in which you enter the following commands.
74
75 * ```{r eval=FALSE}
76 library(cytofkitlab)
77 # Launch the Graphical User Interface for tuning the run
78 cytofkit_GUI()
79 # Note the path to the result file
80 * ```
```



Calculations GUI



1140<140>	
1	CD19-142 <cd19-142></cd19-142>
146<146>	CD20-147 <cd20-147></cd20-147>
151<151>	CD27-167 <cd27-167></cd27-167>
155<155>	CD28-160 <cd28-160></cd28-160>
157<157>	CD3-170 <cd3-170></cd3-170>
161<161>	CD33-158 <cd33-158></cd33-158>
169<169>	CD33-136 <cd33-136> CD38-148<cd38-148></cd38-148></cd33-136>
172<172>	0000 110 0000 110
173<173>	CD4-145 <cd4-145></cd4-145>
1	CD43-150 <cd43-150></cd43-150>
CCR4-149 <ccr4-149></ccr4-149>	CD44-166 <cd44-166></cd44-166>
CCR5-144 <ccr5-144></ccr5-144>	CD45-154 <cd45-154></cd45-154>
CCR7-159 <ccr7-159></ccr7-159>	CD45RA-153 <cd45ra-15< td=""></cd45ra-15<>
CD16-165 <cd16-165></cd16-165>	CD45RO-164 <cd45ro-16< td=""></cd45ro-16<>
CD19-142 <cd19-142></cd19-142>	CD56-176 <cd56-176></cd56-176>
CD20-147 <cd20-147></cd20-147>	
CD27-167 <cd27-167></cd27-167>	CD69-162 <cd69-162></cd69-162>
	CD8-168 <cd8-168></cd8-168>
CD28-160 <cd28-160></cd28-160>	CXCR3-156 <cxcr3-156></cxcr3-156>
CD3-170 <cd3-170></cd3-170>	CXCR5-171 <cxcr5-171></cxcr5-171>
CD33-158 <cd33-158></cd33-158>	Cell_length <cell_length></cell_length>
CD38-148 <cd38-148></cd38-148>	Cisplatin-195 <cisplatin-1< td=""></cisplatin-1<>
CD4-145 <cd4-145></cd4-145>	-
	HLA-DR-163 <hla-dr-16< td=""></hla-dr-16<>

Calculations GUI


Calculations GUI

Calculating...

```
30000 x 50 data was extracted!
Input arguments:
* Project Name: cytofkit_5k
                                                               Running PCA...
* Input FCS files for analysis (6):
                                                               DONE in 0.02 mins
   clean D1.fcs
                                                               Running t-SNE...with seed 42
   clean_D2.fcs
                                                               DONE in 0.9 mins
   clean D3.fcs
                                                               Running UMAP...with seed 42
   clean_P1.fcs
                                                               DONE in 0.5 mins
   clean_P2.fcs
   clean_P3.fcs
                                                               Running PhenoGraph...
* Markers (13):
   151<151>
   169<169>
   CCR7-159<CCR7-159>
                                                               Finding nearest neighbors...DONE ~ 2.08 s
   CD19-142<CD19-142>
                                                               Compute jaccard coefficient between nearest-neighbor sets...DONE ~ 0.29 s
   CD20-147<CD20-147>
                                                               Build a graph from the weighted links...
   CD27-167<CD27-167>
                                                               Links are not combined...DONE ~ 3.22 s
   CD3-170<CD3-170>
                                                               Run clustering on the graph ... DONE ~ 5.12 s
   CD4-145<CD4-145>
                                                             Run Rphenograph DONE, totally takes 10.71 s.
   CD45RA-153<CD45RA-153>
                                                               Return a community class
   CD45RO-164<CD45RO-164>
                                                               -Modularity value: 0.8789248
   CD56-176<CD56-176>
                                                               -Number of clusters: 22
   CD8-168<CD8-168>
   HLA-DR-163<HLA-DR-163>
                                                               DONE in 0.22 mins
* Data merging method: ceil
                                                                                      Calculate cutoff distance...5.36
* Data transformation method: arcsinh
                                                               Running ClusterX...
                                                                 Calculate local Density...DONE!
* Data normalization method: default
                                                                 Detect nearest neighbour with higher density...DONE!
* Dimensionality reduction method: tsne
                                                                 Peak detection...DONE!
 Data clustering method(s): Rphenograph ClusterX FlowSOM
                                                                 Cluster assigning...DONE!
* Data visualization method(s): pca tsne umap
                                                                 Noise cluster removed
* Subset progression analysis method: NULL
                                                               DONE in 3.5 mins
                                                               Running FlowSOM...
   30000 x 50 data was extracted!
                                                                 Building SOM...
                                                                 Meta clustering to 40 clusters...
 Running PCA...
                                                               DONE in 0.11 mins
 DONE in 0.02 mins
  Running t-SNE...with seed 42
                                                            Wrapping results...
                                                            R object is saved in cytofkit_5k.RData
```

Results of calculations

Results of calculations

→ Ce PC → OS (C:) → demo → ULB → run1 → Rechercher dans: run1 run1_analyzedFCS run1_ClusterX_cluster_mean_data.csv run1.RData run1_ClusterX_cluster_mean_heatmap.pdf run1_ClusterX_Cluster_1_expression_values.csv run1_ClusterX_cluster_median_data.csv run1_ClusterX_Cluster_2_expression_values.csv run1_ClusterX_cluster_median_heatmap.pdf run1_ClusterX_Cluster_3_expression_values.csv run1_ClusterX_cluster_percentage_heatmap.pdf run1_ClusterX_Cluster_4_expression_values.csv run1_ClusterX_clusters.csv run1_ClusterX_Cluster_5_expression_values.csv run1_FlowSOM_Cluster_1_expression_values.csv run1 ClusterX Cluster 6 expression values.csv run1 FlowSOM Cluster 2 expression values.csv run1_ClusterX_Cluster_7_expression_values.csv run1_FlowSOM_Cluster_3_expression_values.csv run1 ClusterX Cluster 8 expression values.csv tun1_FlowSOM_Cluster_4_expression_values.csv run1_ClusterX_Cluster_9_expression_values.csv run1_FlowSOM_Cluster_5_expression_values.csv run1_ClusterX_Cluster_10_expression_values.csv run1_FlowSOM_Cluster_6_expression_values.csv run1_ClusterX_Cluster_11_expression_values.csv run1_FlowSOM_Cluster_7_expression_values.csv run1 ClusterX Cluster 12 expression values.csv run1 FlowSOM Cluster 8 expression values.csv run1_ClusterX_Cluster_13_expression_values.csv run1_FlowSOM_Cluster_9_expression_values.csv run1 ClusterX Cluster 14 expression values.csv run1_FlowSOM_Cluster_10_expression_values.csv run1_ClusterX_Cluster_15_expression_values.csv run1_FlowSOM_Cluster_11_expression_values.csv run1_ClusterX_Cluster_16_expression_values.csv run1_FlowSOM_Cluster_12_expression_values.csv run1_ClusterX_Cluster_17_expression_values.csv run1_FlowSOM_Cluster_13_expression_values.csv run1_FlowSOM_cluster_mean_data.csv run1_ClusterX_Cluster_18_expression_values.csv run1 FlowSOM Cluster 14 expression values.csv run1_ClusterX_Cluster_19_expression_values.csv run1_FlowSOM_cluster_median_data.csv run1_FlowSOM_Cluster_15_expression_values.csv run1_ClusterX_Cluster_20_expression_values.csv run1_FlowSOM_Cluster_16_expression_values.csv run1_ClusterX_Cluster_21_expression_values.csv run1_FlowSOM_Cluster_17_expression_values.csv run1_ClusterX_Cluster_22_expression_values.csv 🖈 run1_FlowSOM_Cluster_18_expression_values.csv run1_FlowSOM_clusters.csv run1_ClusterX_Cluster_23_expression_values.csv run1_FlowSOM_Cluster_19_expression_values.csv run1_ClusterX_Cluster_24_expression_values.csv 🖈 run1_FlowSOM_Cluster_20_expression_values.csv run1_ClusterX_Cluster_25_expression_values.csv x run1_FlowSOM_Cluster_21_expression_values.csv run1 ClusterX Cluster 26 expression values.csv run1 FlowSOM Cluster 22 expression values.csv run1_pca_dimension_reduced_data.csv

run1_FlowSOM_Cluster_23_expression_values.csv

run1_FlowSOM_Cluster_24_expression_values.csv run1_FlowSOM_Cluster_25_expression_values.csv run1_FlowSOM_Cluster_26_expression_values.csv run1_FlowSOM_Cluster_27_expression_values.csv run1_FlowSOM_Cluster_28_expression_values.csv run1_FlowSOM_Cluster_29_expression_values.csv run1_FlowSOM_Cluster_30_expression_values.csv run1_FlowSOM_Cluster_31_expression_values.csv run1_FlowSOM_Cluster_32_expression_values.csv run1_FlowSOM_Cluster_33_expression_values.csv run1_FlowSOM_Cluster_34_expression_values.csv run1_FlowSOM_Cluster_35_expression_values.csv run1_FlowSOM_Cluster_36_expression_values.csv run1 FlowSOM Cluster 37 expression values.csv run1_FlowSOM_Cluster_38_expression_values.csv run1 FlowSOM Cluster 39 expression values.csv x run1_FlowSOM_Cluster_40_expression_values.csv run1 FlowSOM cluster cell percentage.csv run1_FlowSOM_cluster_mean_heatmap.pdf run1_FlowSOM_cluster_median_heatmap.pdf run1_FlowSOM_cluster_percentage_heatmap.pdf 🖈 run1_markerFiltered_transformed_merged_expression_data.csv run1_pca_ClusterX_cluster_grid_scatter_plot.pdf run1_pca_ClusterX_cluster_scatter_plot.pdf

run1_pca_FlowSOM_cluster_grid_scatter_plot.pdf

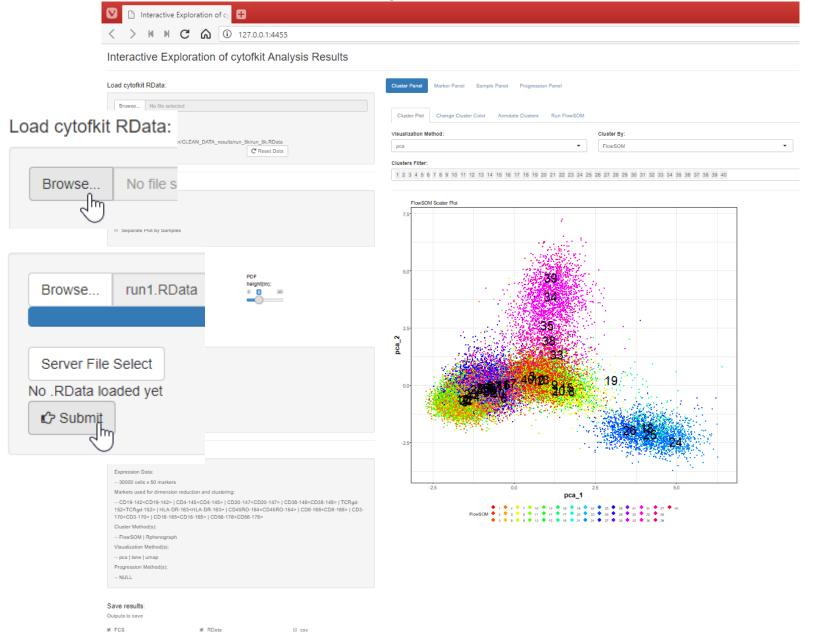
run1_pca_FlowSON run1_pca_Rphenog run1_pca_Rphenog run1_Rphenograph 🖈 run1_Rphenograph 🚮 run1_Rphenograph 🖈 run1_Rphenograph 🔚 run1_Rphenograph 🖈 run1_Rphenograph 🚠 run1_Rphenograph 🖈 run1_Rphenograph 🔚 run1_Rphenograph 🖈 run1_Rphenograph 🔚 run1_Rphenograph 🖈 run1_Rphenograph 🚠 run1_Rphenograph 🖈 run1_Rphenograph 🖈 run1_Rphenograph 🖈 run1_Rphenograph 🖈 run1_Rphenograph 🖈 run1_Rphenograph 🔚 run1_Rphenograph 🖈 run1_Rphenograph 🖈 run1_Rphenograph run1_Rphenograph 🖈 run1_Rphenograph 🚮 run1_Rphenograph run1_Rphenograph

run1_ClusterX_cluster_cell_percentage.csv

🔚 run1_Rphenograph

EXPLORE RESULTS CYTOFKIT

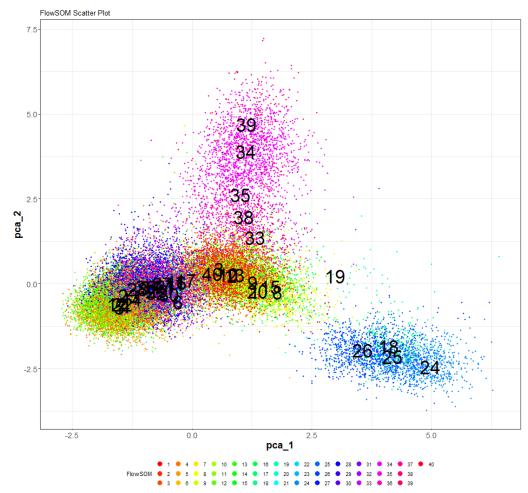
Start analysis interface


```
82 * ## Exploration then
83
84 You could run the interactive exploration and analysis of the clustering and dimension
85 reduction results using the Shiny application.
86
87 * ```{r eval=FALSE}

# Launch the Shiny interface to view and annotate the analysis

cytofkitShinyAPP()

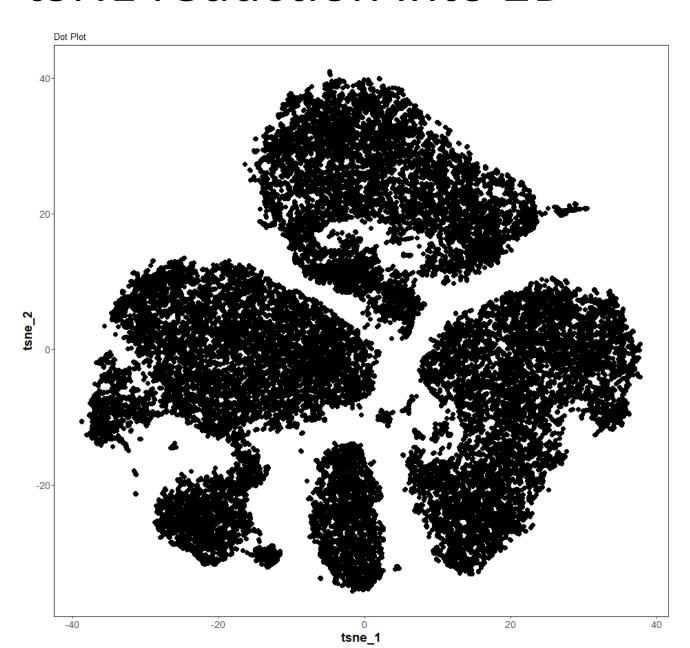
90 *
```


Shiny interface

♣ Save Data

tSNE reduction into 2D

Cluster Panel


Cluster Plot

Visualization Meth-

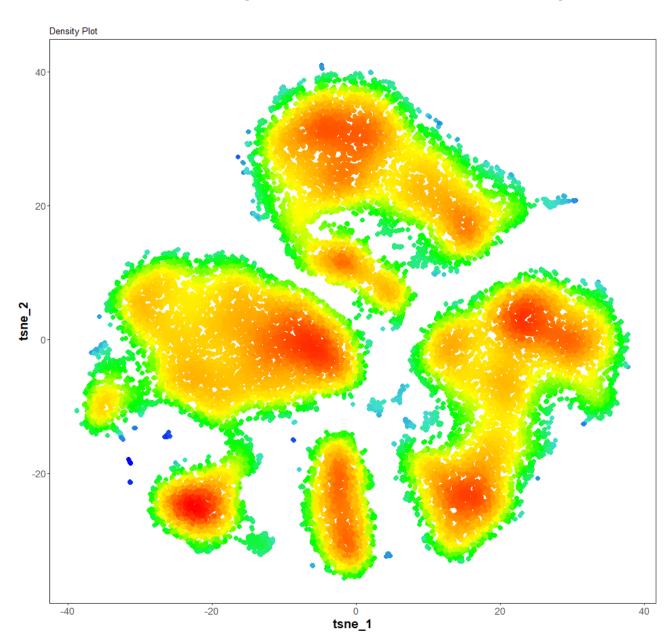
tsne

Cluster By:

None

Cell density on tSNE map

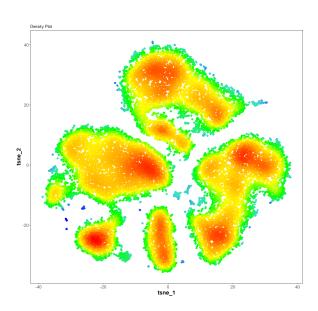
Cluster Panel


Cluster Plot

Visualization Meth-

tsne

Cluster By:

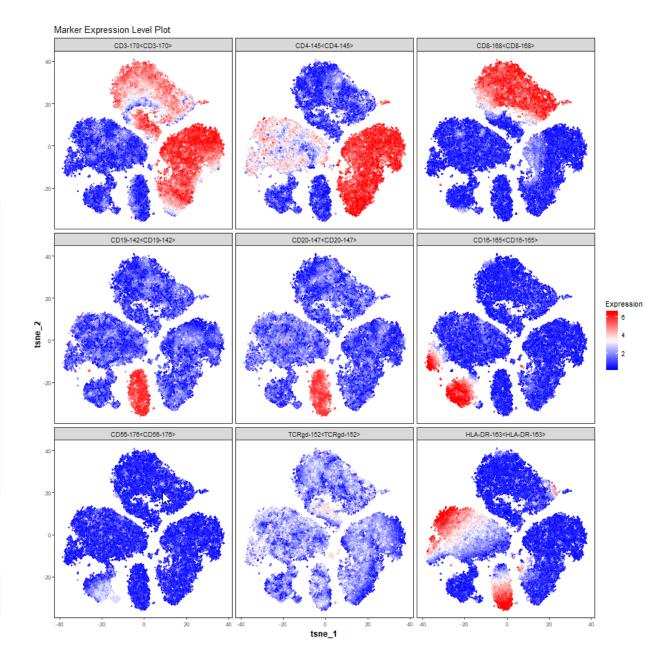

Density

Quizz

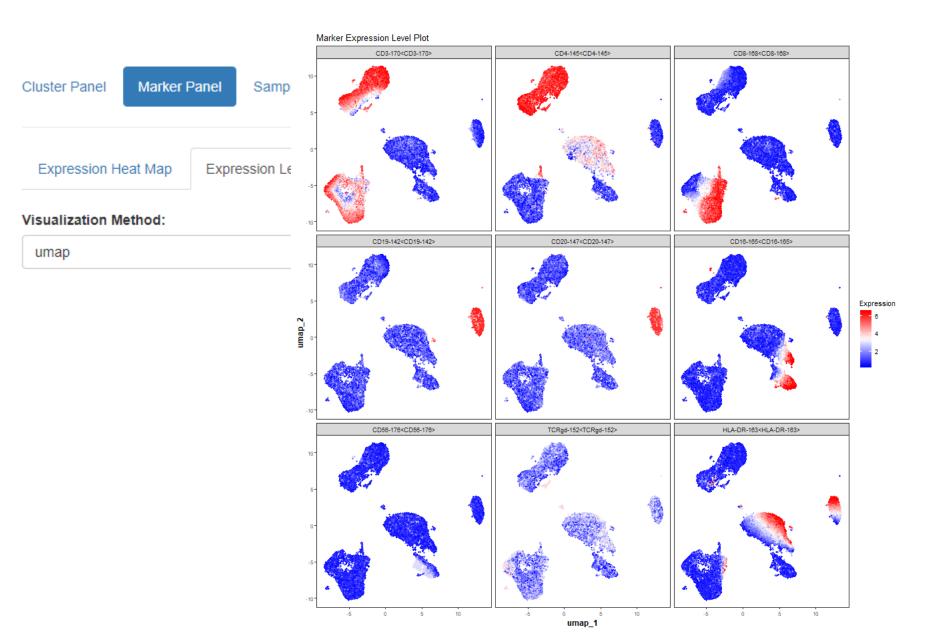
How to make sense of the aggregates?

Without clustering yet!

Markers on tSNE


Marker Panel

Expression Level Plot


Plot Marker:

CD3-170<CD3-170>
CD4-145<CD4-145>
CD8-168<CD8-168>
CD19-142<CD19-142>
CD20-147<CD20-147>
CD16-165<CD16-165>
CD56-176<CD56-176>
TCRgd-152<TCRgd-152>
HLA-DR-163<HLA-DR-163>

All Markers
Update Plot

Markers on UMAP

What about clusterings?

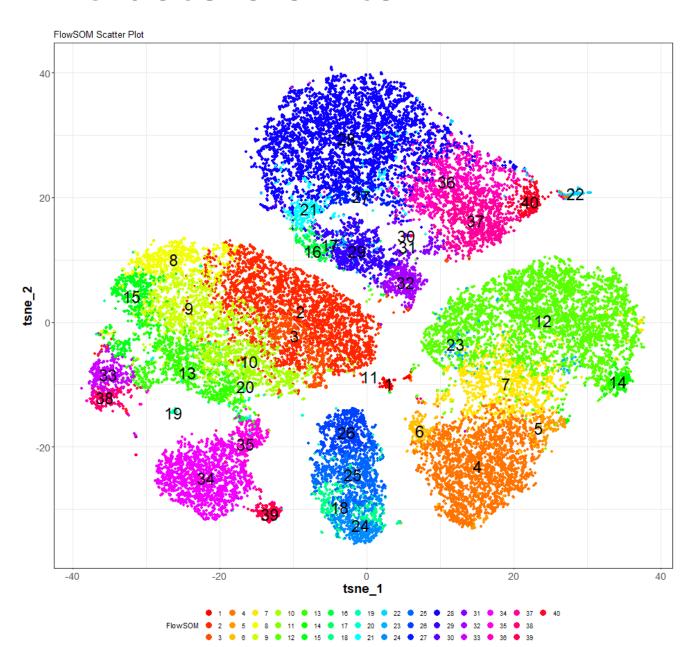
- FlowSOM
- Phenograph
- ClusterX

 By definition, in cytofkit, what is the difference of ClusterX vs FlowSOM & Phenograph?

Let's overlay FlowSOM on top of tSNE

Clusters on tSNE

Cluster Panel

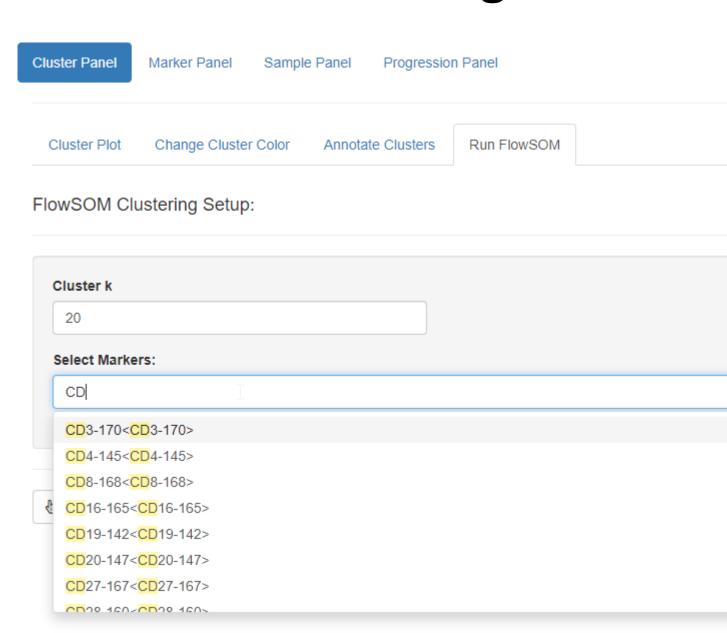

Cluster Plot

Visualization Meth-

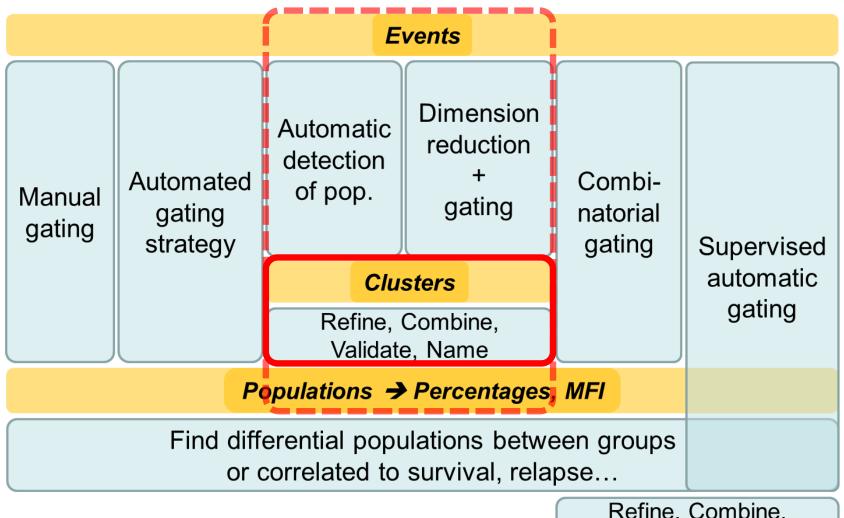
tsne

Cluster By:

FlowSOM

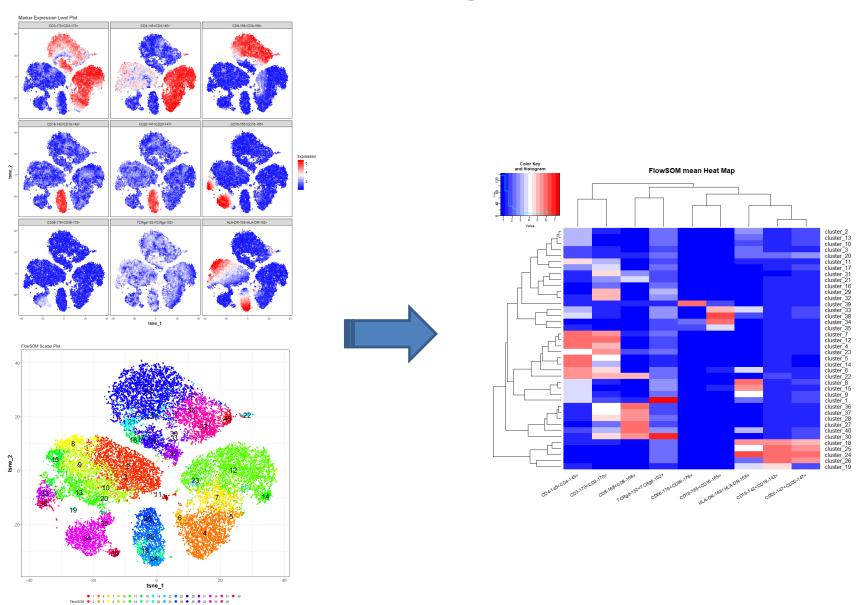

Hands on

- Overlay other clusterings
- Use UMAP also

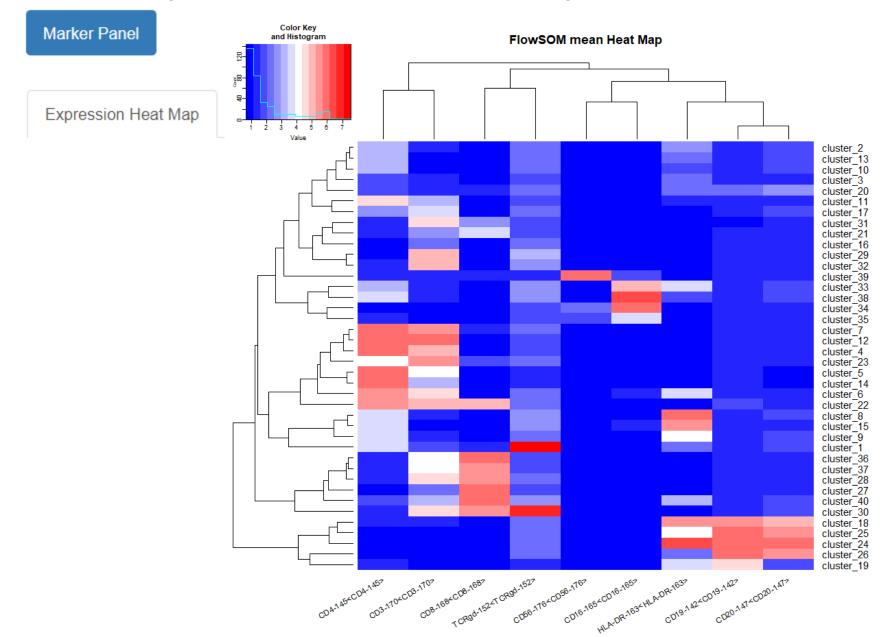

FlowSOM is fast... do it again!

Cluster Panel

Run FlowSOM

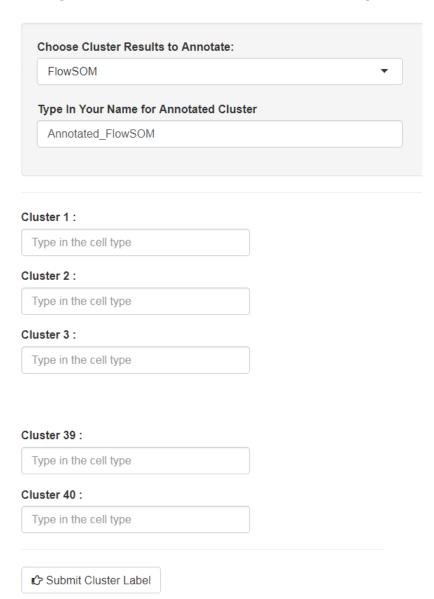


Features analysis



Refine, Combine, Validate, Name

Annotating clusters


Expression heatmap of clusters

Cytofkit - Analysis

Cluster Panel

Annotate Clusters

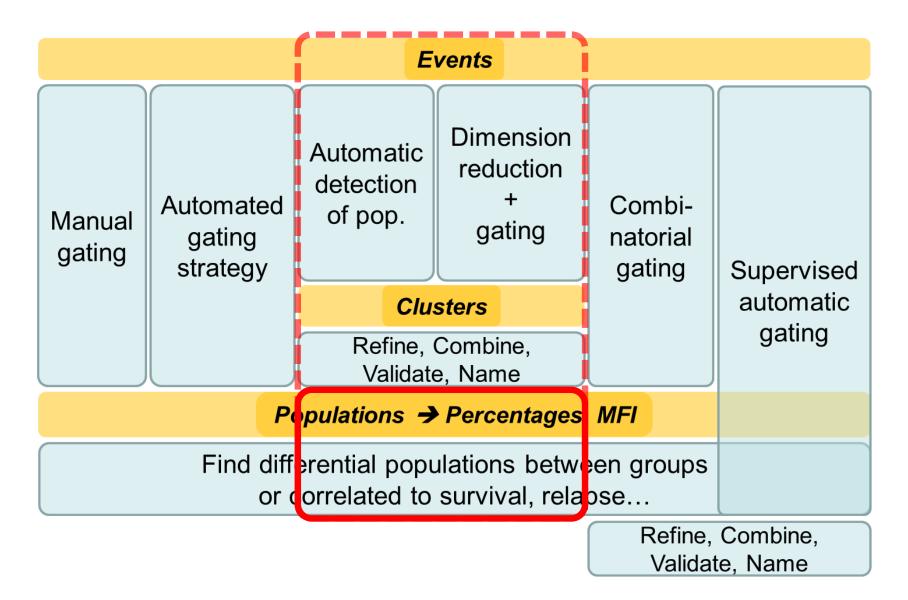
Hands on

Merge a few clusters

Outline

- ☑ Reduce dimensions
- ✓ Clusterize cells
- ✓ Merge clusters
- ☑ Annotate clusters

What have we done?



Outline

- ✓ Reduce dimensions
- ✓ Clusterize cells
- ✓ Merge clusters
- ☑ Annotate clusters
- Unsupervised gating
- Data driven cell populations with expert annotation

What's next?

Features analysis

Back to the question

 Find a group of cells that differ in abundance between two groups of patients

Try to view differences on tSNE (or UMAP)

tSNE split by samples

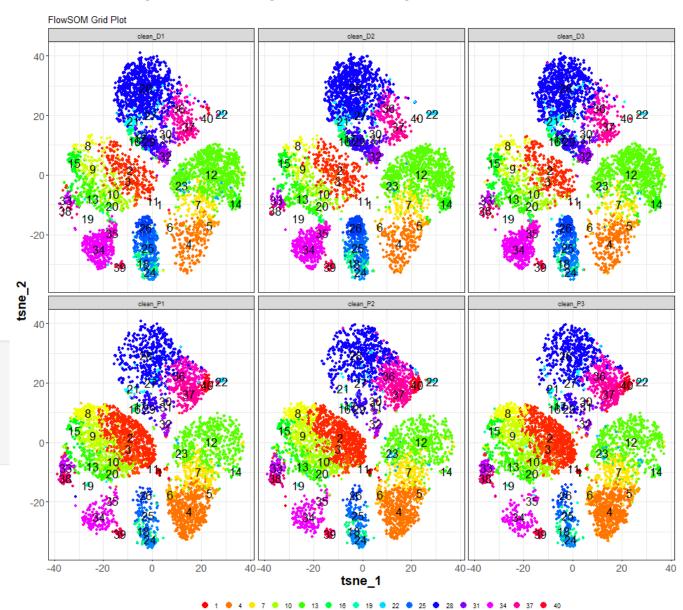
Cluster Panel

Cluster Plot

Visualization Meth

tsne

Cluster By:


FlowSOM

Plot Control:

Add Cluster Labels

Repel Cluster Labels

Separate Plot by Samples

Back to the question

 Find a group of cells that differ in abundance between two groups of patients

What would you like to see/do?

Pool samples

Sample Panel

Regroup Samples

D_status		
clean_D2 :		
D_status		
clean_D3:		
D_status		
clean_P1:		
P_status		
clean_P2 :		
P_status		
clean_P3 :		
P_status		
Group Name Levels: (to order the group i	names)	
Type in group names in order, seperated b	by semicolon(;)	

Revert to Old Sample Names

Submit New Sample Groups

Hands on

- Pool samples in order to get two metasamples
- View side-by-side meta-samples

Visualize differences on tSNE (or UMAP)

Side-by-side tSNE

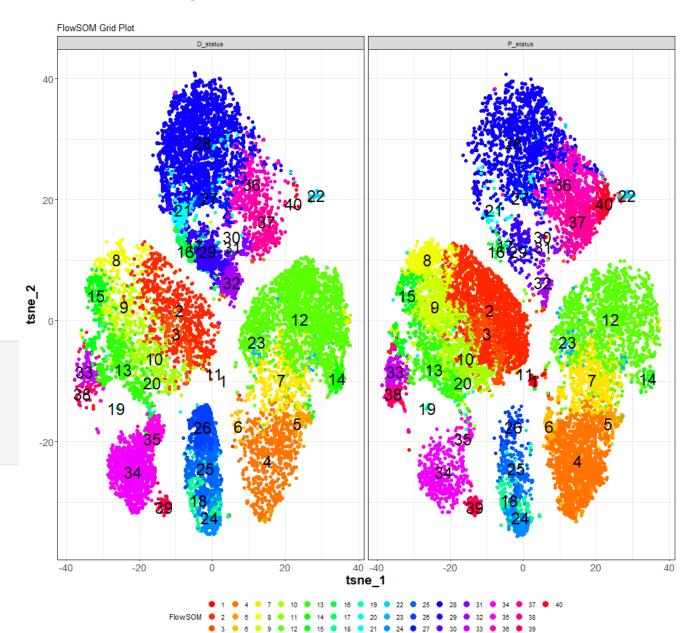
Cluster Panel

Cluster Plot

Visualization Meth-

tsne

Cluster By:


FlowSOM

Plot Control:

Add Cluster Labels

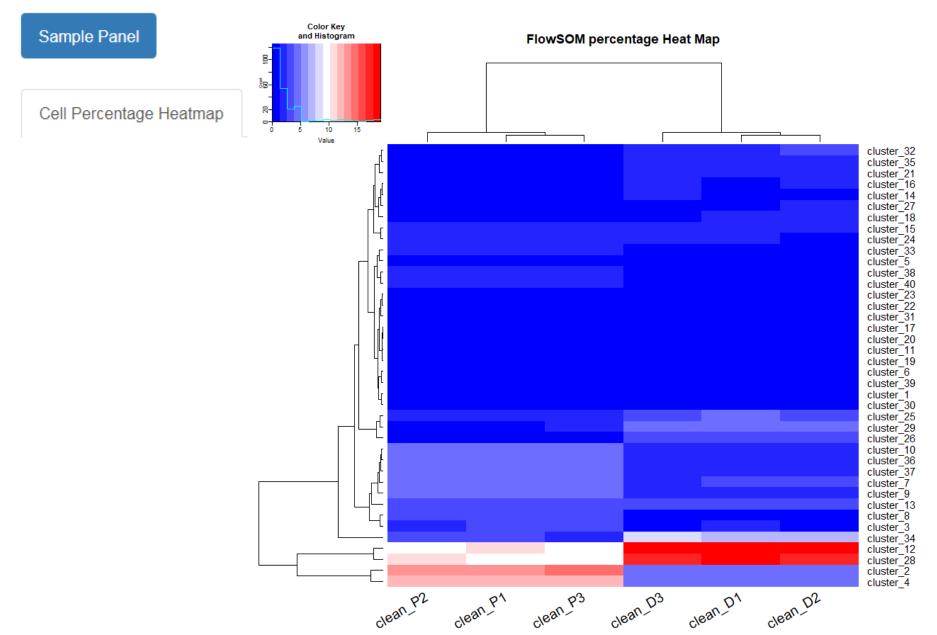
Repel Cluster Labels

Separate Plot by Samples

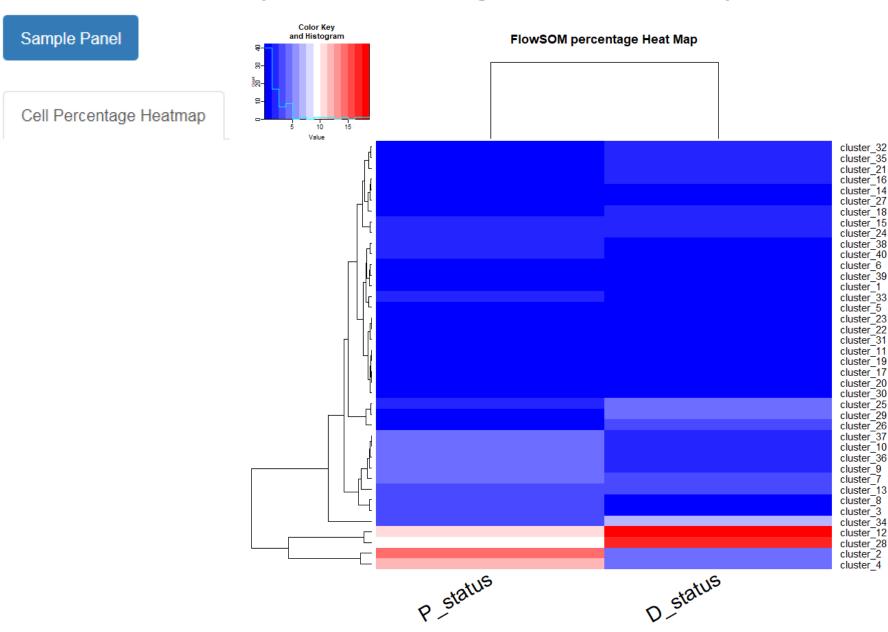
Outline

- ☑ Reduce dimensions
- ✓ Clusterize cells
- ✓ Merge clusters
- ☑ Annotate clusters
- Unsupervised gating, cell populations

What's next?



Back to the objective


 Find a group of cells that differ in abundance between two groups of patients

- How to quantify the differences?
- Which feature to extract?

Cell percentage heatmap

Cell percentage heatmap

Outline

Unsupervised gating, cell populations

- Cell percentage analysis
- ✓ Visualize percentages as heatmap
- ☑ Clusterize percentages of cell populations

Outline

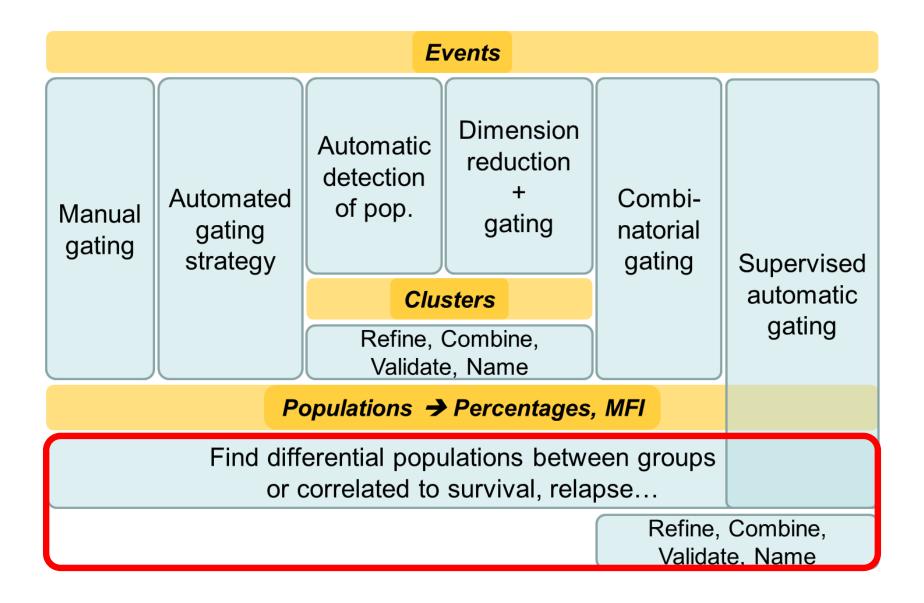
Unsupervised gating, cell populations

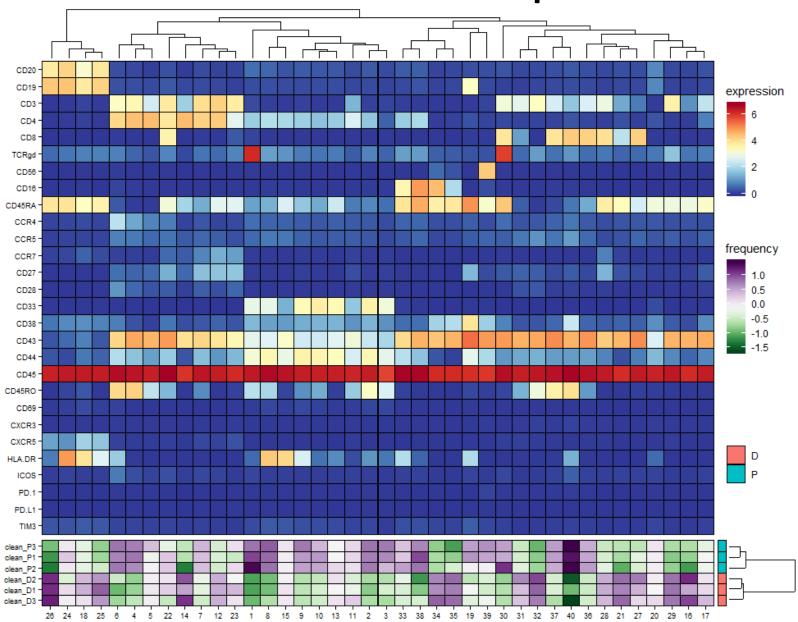
Cell percentage analysis

What's next?

☐ Publication ready figures

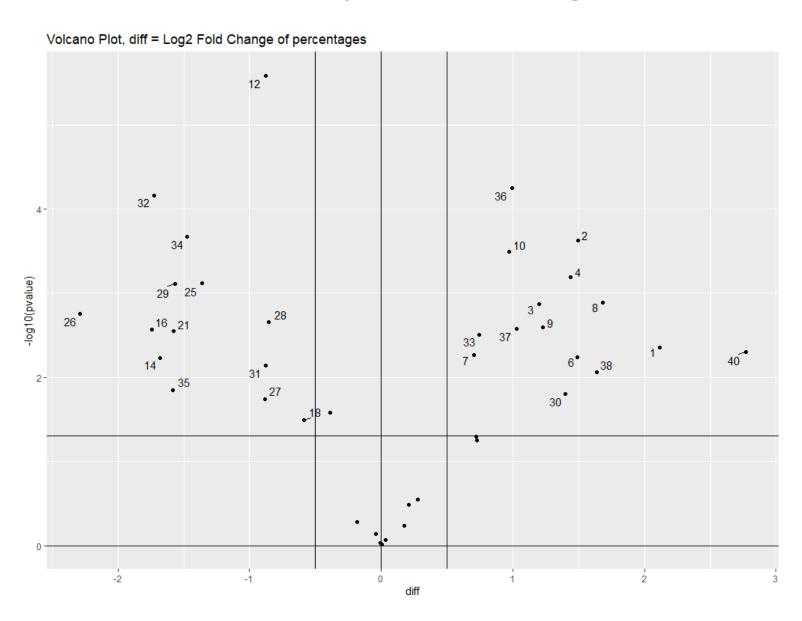
☐ Box-plots, p-values


☐ What else?



PERCENTAGES ANALYSIS CYTOFAST

Features analysis

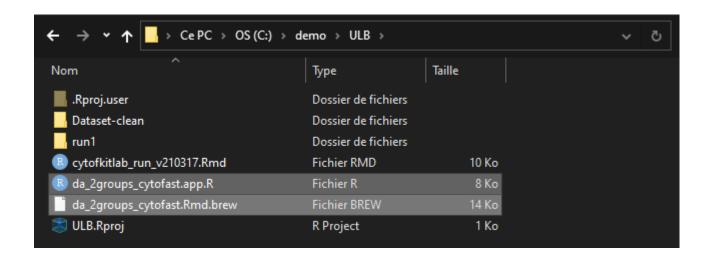

Prettier heatmaps

Boxplots

Multiple testing

Statistical tests

1	pvalue	adjusted	fold	diff	clean_D1	clean_D2	clean_D3	clean_P1	clean_P2	clean_P3
:	:	:	:	:	:	:	:	:	:	:
1	0.0044447	0.0093572	4.33	2.1132617	0	0	1	33	46	27
2	0.0002351	0.0018806	2.82	1.4959178	227	247	254	687	701	718
3	0.0013465	0.0048965	2.29	1.1976641	66	55	53	152	124	163
4	0.0006430	0.0034625	2.71	1.4362518	207	205	242	628	580	609
6	0.0057602	0.0103445	2.81	1.4921239	9	16	12	50	53	54
7	0.0054537	0.0103445	1.63	0.7038460	130	138	116	211	211	221
8	0.0012854	0.0048965	3.22	1.6858110	40	40	50	160	156	167
9	0.0025327	0.0066377	2.34	1.2273065	88	85	88	208	204	241
10	0.0003242	0.0021612	1.96	0.9721761	113	103	110	238	224	207
12	0.0000026	0.0001030	-1.84	-0.8776517	956	939	932	517	499	509
14	0.0059481	0.0103445	-3.21	-1.6819130	43	61	69	14	5	15
16	0.0027074	0.0066377	-3.35	-1.7449611	46	77	70	13	8	15
18	0.0321336	0.0428447	-1.50	-0.5888729	79	76	60	44	44	44
21	0.0028210	0.0066377	-2.98	-1.5757889	86	95	97	26	19	29
25	0.0007619	0.0034625	-2.57	-1.3591659	233	187	186	68	85	65
26	0.0017456	0.0058185	-4.88	-2.2860022	175	176	186	28	24	35
27	0.0182757	0.0261081	-1.85	-0.8836710	56	73	46	30	27	23
28	0.0021898	0.0066377	-1.81	-0.8560822	901	890	846	474	525	447
29	0.0007791	0.0034625	-2.96	-1.5641741	204	205	202	59	61	67
30	0.0157821	0.0233808	2.64	1.3991602	1	0	1	14	27	15
31	0.0071710	0.0119516	-1.83	-0.8747789	30	40	29	13	15	12
32	0.0000683	0.0009111	-3.31	-1.7275874	120	132	109	30	32	26
33	0.0031106	0.0069124	1.67	0.7438357	37	42	37	66	81	68
34	0.0002145	0.0018806	-2.78	-1.4731193	346	357	407	129	132	119
35	0.0142354	0.0219006	-2.99	-1.5813353	106	114	114	30	42	22
36	0.0000561	0.0009111	1.99	0.9931444	101	100	104	212	220	205
37	0.0026399	0.0066377	2.04	1.0262677	114	111	94	230	217	232
38	0.0087517	0.0140028	3.11	1.6349654	16	11	25	83	71	66
40	0.0049719	0.0099439	6.81	2.7685644	8	2	1	76	83	84

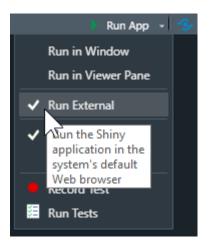

Cytofast - Analysis

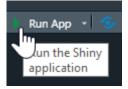
- Designed for cytosplore
- Available as R commands
- Read FCS files with cell annotations
 - new channels holding tSNE, UMAP dimensions
 - new channels holding clustering results

- Adapted to read cytofkit results
- Analysis available as a R MarkDown file
- Diff Abund, 2 groups

Prepare analysis

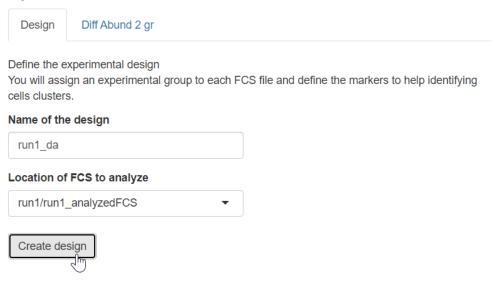
Copy the two files to carry out a differential abundance analysis in the Rstudio project folder where the FCS files and the cytofkit results are.



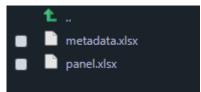

Prepare analysis

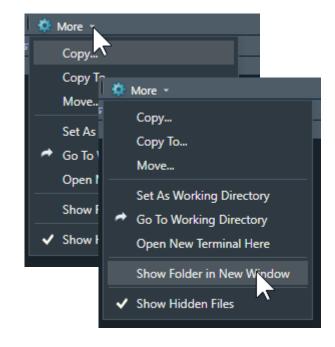
Run the Shiny application to start the analysis

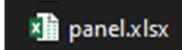
Verify the application will run in an external Web browser (prefer Firefox or Chrome), then run

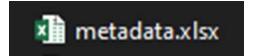


Design the analysis


Create a template design, then edit it to fit your experimental design

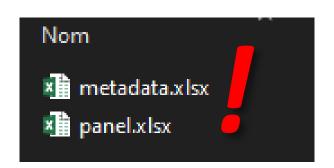

cytofast GUI





Design

Edit the two files to inform about the experimental design:


- metadata: fulfill the condition column,
- panel: remove unneeded markers/rows,
 change names in the antigen column

file_name	sample_id	patient_id	condition
run1/run1_analyzedFCS/cytofkit_clean_D1.fcs	cytofkit_clean_D1	1	control
run1/run1_analyzedFCS/cytofkit_clean_D2.fcs	cytofkit_clean_D2	2	control
run1/run1_analyzedFCS/cytofkit_clean_D3.fcs	cytofkit_clean_D3	3	control
run1/run1_analyzedFCS/cytofkit_clean_P1.fcs	cytofkit_clean_P1	1	treated
run1/run1_analyzedFCS/cytofkit_clean_P2.fcs	cytofkit_clean_P2	2	treated
run1/run1_analyzedFCS/cytofkit_clean_P3.fcs	cytofkit_clean_P3	3	treated

4	Α	В	С
1	fcs_colname	antigen	marker_class
2	146	CD64	type
3	151	CD14	type
4	161	CD32	type
5	169	CD25	type
6	172	CD57	type
7	CCR4-149	CCR4-149	type
8	CCR5-144	CCR5-144	type
9	CCR7-159	CCR7-159	type
10	CD16-165	CD16-165	type
11	CD19-142	CD19-142	type
12	CD20-147	CD20-147	type
13	CD27-167	CD27-167	type
14	CD28-160	CD28-160	type
15	CD3-170	CD3-170	type
16	CD33-158	CD33-158	type
17	CD38-148	CD38-148	type
18	CD4-145	CD4-145	type
19	CD43-150	CD43-150	type
20	CD44-166	CD44-166	type
21	CD45-154	CD45-154	type
22	CD45RA-153	CD45RA-153	type
23	CD45RO-164	CD45RO-164	type
24	CD56-176	CD56-176	type
25	CD69-162	CD69-162	type
26	CD8-168	CD8-168	type
27	CXCR3-156	CXCR3-156	type
28	CXCR5-171	CXCR5-171	type
29	HLA-DR-163	HLA-DR-163	type
30	ICOS-141	ICOS-141	type
31	NA-191	NA-191	type
32	NA-193	NA-193	type
33	PD-1-174	PD-1-174	type
34	PD-L1-175	PD-L1-175	type
35	TCRgd-152	TCRgd-152	type
36	TIM3-143	TIM3-143	type
37	nca 1	<ΝΔ>	dimred

Create script and report

cytofast GUI

Design Diff Abund 2 gr

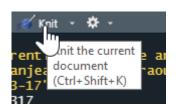
Set up the differential abundance analysis

Define the parameters of the analysis for grouping samples, reporting cells clusters statistical

Name of the analysis

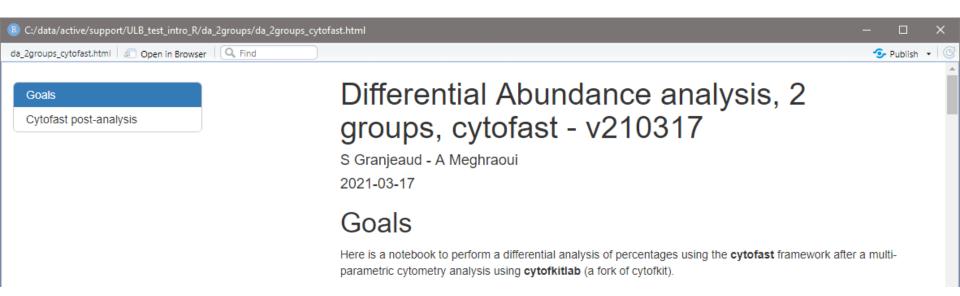
da2

Design to use

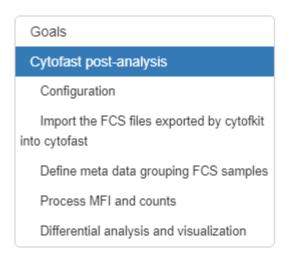

0480D5CC-da_2gr_1 ▼

Asinh cofactor for scaling 5 Clustering to report Rphenograph clusterIDs Column to group FCS condition Reference group control P-value threshold 0.05 Logfold threshold Create script

▲ Download report

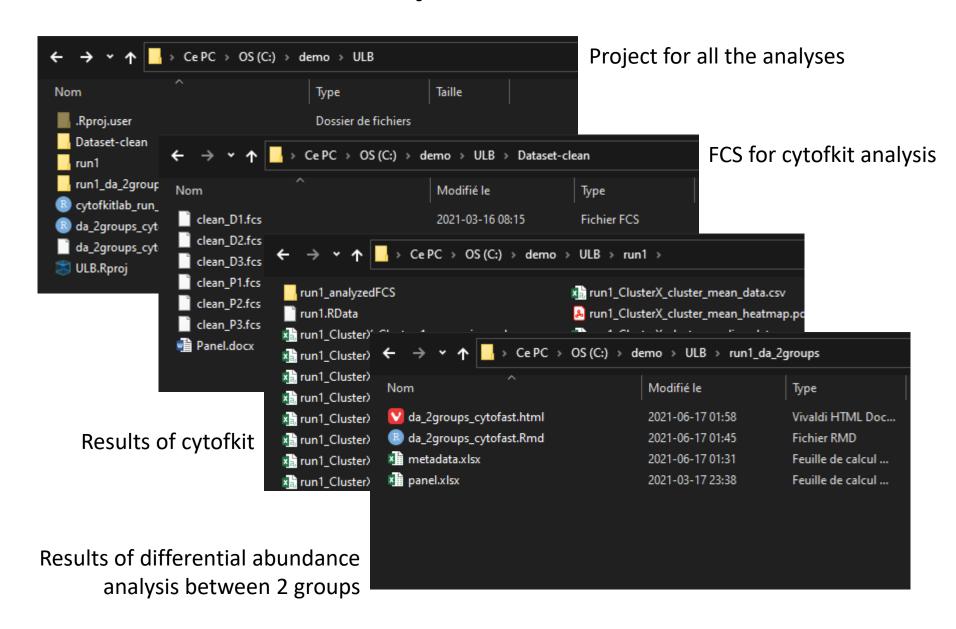

Knit script

The HTML report is automatically created with the Shiny application.


You can tweak the Rmd script if needed. Knit it to generate a new HTML report.

View results

Open the HTML report in a Web browser and navigate in the table of content



Stop the R Shiny application


```
> runApp('da_2groups_cytofast.app.R')
Listening on http://127.0.0.1:6411
> |
```

Analysis folder

Final word

Unsupervised gating, cell populations

Cell percentage analysis

Better and deeper analyses with cytofast

☐ What else?

