library(flowCore)
library(cytofkit)
# First run
# cytofkit_GUI()
# compute the analysis
# then run the following command to view the results
cytofkitShinyAPP("C:/demo/190917-atelier/demo/cytofkit_demo.RData")
Cytofast has nice plots.
Read Cytofkit FCS export
library(flowCore)
library(cytofast)
cfData = readCytofkitFCS("demo/cytofkit_demo_analyzedFCS")
## Reading .FCS sample: 1
## Reading .FCS sample: 2
## Reading .FCS sample: 3
## Reading .FCS sample: 4
## Reading .FCS sample: 5
## Reading .FCS sample: 6
# cfData = readCytofkitFCS("demo/cytofkit_demo_analyzedFCS", clusterID = "Rphenograph_clusterIDs")
Optionnally, do some cleaning
# Remove unneeded channels
keep <- colnames(cfData@expr) # all
keep <- keep[!grepl("^(Time|Event_length)", keep, ignore.case = TRUE)]
keep <- keep[!grepl("(_ADN1|_ADN2)", keep, ignore.case = TRUE)]
keep <- keep[!grepl("^X\\d+", keep) | grepl("_", keep)] # unannotated X channel
cfData@expr <- cfData@expr[, keep]
# Rename channels
colnames(cfData@expr) <- gsub("(^X\\d+.+?_)", "", keep) # remove metal tag
# Manual ordering of channels
first <- c("CD14", "CD19", "CD3", "CD4", "CD8", "CD56", "CD45RA", "CD95", "CD127")
keep <- colnames(cfData@expr) # all
cfData@expr <- cfData@expr[, c(keep[1:2], first, setdiff(keep[-(1:2)], first))]
Read meta data that group FCS samples
# Create a template file to annotate samples
if (!file.exists("meta.csv")) {
meta <- data.frame(cfData@samples, group = "")
write.csv(meta, "meta.csv")
}
# Fill the template using Excel or so
# Import annotation
meta <- read.csv("meta.csv", row.names = 1)
meta <- meta[match(row.names(cfData@samples), meta[,"sampleID"]),] # match sampleID
cfData@samples <- cbind.data.frame(cfData@samples, meta[, -1, drop = FALSE])
cfData@samples
## sampleID FCSfilename group
## HD1_Ungated HD1_Ungated cytofkit_HD1_Ungated.fcs HD
## HD2_Ungated HD2_Ungated cytofkit_HD2_Ungated.fcs HD
## HD3_Ungated HD3_Ungated cytofkit_HD3_Ungated.fcs HD
## HIV1_Ungated HIV1_Ungated cytofkit_HIV1_Ungated.fcs HIV
## HIV2_Ungated HIV2_Ungated cytofkit_HIV2_Ungated.fcs HIV
## HIV3_Ungated HIV3_Ungated cytofkit_HIV3_Ungated.fcs HIV
Transform expression values, in the same way you display marker intensity
# Transform expression with asinh( x / 5 )
cfData@expr[,-(1:2)] <- asinh(cfData@expr[,-(1:2)]/5)
Works with cell counts
# Retrieve cell counts
cfData <- cellCounts(cfData)
head(cfData@counts)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## HD1_Ungated 20 114 109 79 35 40 426 600 127 8 123 70 975 17 2
## HD2_Ungated 5 318 304 248 56 41 179 460 538 8 141 177 854 36 21
## HD3_Ungated 9 143 127 71 25 20 360 531 95 9 116 61 975 14 6
## HIV1_Ungated 324 3275 708 111 33 102 1 123 478 102 67 278 637 87 118
## HIV2_Ungated 172 1407 175 537 75 140 64 305 313 65 155 199 1130 30 147
## HIV3_Ungated 151 2069 325 752 95 176 43 210 277 136 83 110 487 21 120
## 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
## HD1_Ungated 391 46 211 61 193 59 486 93 156 235 102 38 71 115 200 13
## HD2_Ungated 50 11 253 26 191 23 750 151 119 63 35 194 71 652 325 10
## HD3_Ungated 321 90 174 51 183 47 520 109 145 246 84 17 84 127 190 31
## HIV1_Ungated 95 4 236 43 30 176 133 312 329 10 12 113 33 73 139 12
## HIV2_Ungated 82 144 247 18 55 55 430 404 86 37 14 146 48 1527 183 20
## HIV3_Ungated 129 10 240 44 55 14 634 178 98 66 26 325 20 1650 90 28
## 32 33 34 35 36 37 38 39 40
## HD1_Ungated 20 66 87 1195 42 1965 1207 66 137
## HD2_Ungated 49 28 27 966 38 1118 1242 146 76
## HD3_Ungated 35 32 31 1448 32 1889 1318 83 151
## HIV1_Ungated 42 24 7 583 97 548 397 18 90
## HIV2_Ungated 62 26 24 730 64 105 471 44 64
## HIV3_Ungated 18 17 14 435 77 90 576 24 87
cytoHeatmaps(cfData, group="group", legend=TRUE)
Cell counts need to be transformed
# Store raw counts
cellCountRaw <- cfData@counts
# Transform cell counts with log2( x + floor )
cfData@counts <- log2(cfData@counts+10)
# Center
cfData@counts <- sweep(cfData@counts, 2, colMeans(cfData@counts), "-")
round(head(cfData@counts))
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
## HD1_Ungated -1 -2 -1 -1 0 -1 2 1 -1 -1 0 -1 0 -1 -2 1 0 0 1 1
## HD2_Ungated -2 -1 0 0 0 -1 1 0 1 -1 0 0 0 0 -1 -1 -1 0 0 1
## HD3_Ungated -2 -2 -1 -1 -1 -1 2 1 -1 -1 0 -1 0 -1 -2 1 1 0 0 1
## HIV1_Ungated 2 2 2 -1 0 1 -3 -1 1 1 -1 1 0 1 1 0 -2 0 0 -1
## HIV2_Ungated 1 1 0 1 1 1 -1 0 0 1 0 1 0 0 2 -1 2 0 -1 -1
## HIV3_Ungated 1 2 0 2 1 1 -1 -1 0 2 0 0 -1 0 1 0 -1 0 0 -1
## 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
## HD1_Ungated 0 0 -1 0 2 1 -1 0 -2 0 0 -1 1 1 1 0 2 1 0 0
## HD2_Ungated -1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0
## HD3_Ungated 0 0 -1 0 2 1 -2 1 -1 0 1 0 0 0 1 -1 2 1 1 1
## HIV1_Ungated 2 -2 1 1 -2 -1 0 0 -2 0 0 0 0 -1 0 1 0 -1 -1 0
## HIV2_Ungated 0 0 1 -1 -1 -1 1 0 2 0 0 1 0 0 0 0 -2 -1 0 -1
## HIV3_Ungated -1 1 0 0 0 0 2 -1 2 -1 0 -1 -1 -1 -1 0 -2 0 -1 0
cytoHeatmaps(cfData, group="group", legend=TRUE)
Let’s take HD as reference
# Center to HD
cfData@counts <- sweep(cfData@counts, 2, colMeans(cfData@counts[cfData@samples$group == "HD",]), "-")
round(head(cfData@counts)*10)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
## HD1_Ungated 6 -6 -5 -5 -1 2 5 2 -5 0 0 -4 1 -2 -6 10 2 0 4
## HD2_Ungated -4 8 9 11 5 3 -7 -2 15 0 1 9 -1 6 8 -17 -12 3 -6
## HD3_Ungated -1 -3 -3 -6 -4 -5 2 0 -9 1 -1 -5 1 -4 -2 7 10 -3 2
## HIV1_Ungated 40 42 21 0 -1 14 -48 -20 13 26 -8 15 -5 16 28 -9 -18 2 0
## HIV2_Ungated 32 29 1 22 9 18 -21 -8 7 20 3 10 3 4 31 -11 17 2 -9
## HIV3_Ungated 30 35 10 26 12 21 -26 -13 5 30 -6 2 -9 0 28 -5 -13 2 0
## 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## HD1_Ungated 0 4 -2 -3 2 6 5 -4 -1 -8 -2 -2 -5 6 9 0 1
## HD2_Ungated 0 -6 4 4 -2 -12 -8 17 -1 16 5 -4 5 -4 -5 -3 0
## HD3_Ungated 0 2 -1 -1 1 6 3 -12 1 -7 -3 6 1 -2 -4 3 -2
## HIV1_Ungated -23 19 -20 14 12 -31 -18 9 -10 -14 -7 -3 3 -5 -16 -10 12
## HIV2_Ungated -16 4 -4 17 -6 -18 -17 13 -6 28 -3 2 7 -5 -6 -7 7
## HIV3_Ungated -16 -11 1 6 -5 -11 -11 24 -15 29 -13 5 -6 -9 -11 -14 9
## 37 38 39 40
## HD1_Ungated 3 -1 -4 2
## HD2_Ungated -5 0 6 -6
## HD3_Ungated 2 1 -2 3
## HIV1_Ungated -15 -16 -19 -3
## HIV2_Ungated -38 -14 -9 -8
## HIV3_Ungated -40 -11 -16 -4
cytoHeatmaps(cfData, group="group", legend=TRUE)
Box plots
# Detailed view of counts aka percentages
cytoBoxplots(cfData, group = "group")
Functional marker histograms
# Detailed of functional markers
msiPlot(cfData, markers = c("CD45", "CD4"), byGroup='group')
Do some statistics
# Add t.test
cfData <- cytottest(cfData, group="group", adjustMethod = "fdr")
head(cfData@results)
## clusters mean_HD mean_HIV pvalue adjusted
## 1 1 0.000000e+00 3.3869024 0.001575980 0.06303922
## 2 2 -7.402390e-17 3.5342799 0.003460116 0.06920232
## 3 3 3.699840e-17 1.0399227 0.223951773 0.35832284
## 4 4 7.399680e-17 1.5870323 0.190784696 0.34688127
## 5 5 -1.849468e-17 0.6281237 0.261691958 0.40260301
## 6 6 -3.700743e-17 1.7840534 0.006007491 0.07469355
# Add some columns
# fold is a multiplicative coefficient applied to the reference
# fold is negative to stand for 1/fold
cfData@results <- within(cfData@results, {
diff <- mean_HIV - mean_HD
fold <- sign(diff) * round(2^abs(diff), 2)
unselected <- abs(diff) < 0.5 | pvalue > 0.05
label <- clusters
label[unselected] <- NA
})
View the Volcano plot
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:cytofast':
##
## expr
library(ggrepel)
set.seed(42)
p <- ggplot(cfData@results, aes(diff, -log10(pvalue))) + geom_point() + geom_hline(yintercept = -log10(c(0.05, 1))) + geom_vline(xintercept = c(-0.5, 0 , 0.5)) + ggtitle("Volcano Plot, diff = Log2 Fold Change of percentages")
p + geom_text_repel(aes(label = label))
## Warning: Removed 26 rows containing missing values (geom_text_repel).
p <- ggplot(cfData@results, aes(2^diff, -log10(pvalue))) + geom_point() + geom_hline(yintercept = -log10(c(0.05, 1))) + geom_vline(xintercept = c(1/1.5, 1 , 1.5)) + ggtitle("Volcano Plot, diff = Log2 Fold Change of percentages") + scale_x_continuous(trans = "log2")
p + geom_text_repel(aes(label = label))
## Warning: Removed 26 rows containing missing values (geom_text_repel).
and the table of counts
library(knitr)
kable(
cbind(cfData@results[with(cfData@results, !unselected),], t(
cellCountRaw[,with(cfData@results, !unselected)]))[,-c(1:3,6:7)]
)
pvalue | adjusted | fold | diff | HD1_Ungated | HD2_Ungated | HD3_Ungated | HIV1_Ungated | HIV2_Ungated | HIV3_Ungated | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0015760 | 0.0630392 | 10.46 | 3.3869024 | 20 | 5 | 9 | 324 | 172 | 151 |
2 | 0.0034601 | 0.0692023 | 11.59 | 3.5342799 | 114 | 318 | 143 | 3275 | 1407 | 2069 |
6 | 0.0060075 | 0.0746935 | 3.44 | 1.7840534 | 40 | 41 | 20 | 102 | 140 | 176 |
7 | 0.0484989 | 0.1385683 | -8.91 | -3.1550009 | 426 | 179 | 360 | 1 | 64 | 43 |
10 | 0.0112945 | 0.0746935 | 5.84 | 2.5460736 | 8 | 8 | 9 | 102 | 65 | 136 |
15 | 0.0148138 | 0.0746935 | 7.60 | 2.9259433 | 2 | 21 | 6 | 118 | 147 | 120 |
20 | 0.0149387 | 0.0746935 | -3.60 | -1.8473936 | 193 | 191 | 183 | 30 | 55 | 55 |
23 | 0.0470964 | 0.1385683 | 2.33 | 1.2222525 | 93 | 151 | 109 | 312 | 404 | 178 |
26 | 0.0415599 | 0.1385683 | -2.92 | -1.5464926 | 102 | 35 | 84 | 12 | 14 | 26 |
35 | 0.0199767 | 0.0887852 | -2.06 | -1.0447995 | 1195 | 966 | 1448 | 583 | 730 | 435 |
36 | 0.0123828 | 0.0746935 | 1.87 | 0.9053814 | 42 | 38 | 32 | 97 | 64 | 77 |
37 | 0.0478986 | 0.1385683 | -8.70 | -3.1215816 | 1965 | 1118 | 1889 | 548 | 105 | 90 |
38 | 0.0088101 | 0.0746935 | -2.60 | -1.3802123 | 1207 | 1242 | 1318 | 397 | 471 | 576 |
39 | 0.0245895 | 0.0983579 | -2.78 | -1.4742611 | 66 | 146 | 83 | 18 | 44 | 24 |